論文の概要: TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and
Reconstruction
- arxiv url: http://arxiv.org/abs/2105.07468v1
- Date: Sun, 16 May 2021 16:15:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:29:54.418826
- Title: TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and
Reconstruction
- Title(参考訳): TSDF++:動的オブジェクト追跡と再構成のためのマルチオブジェクト定式化
- Authors: Margarita Grinvald, Federico Tombari, Roland Siegwart, Juan Nieto
- Abstract要約: 我々は,シーン全体とその中のすべてのオブジェクトに対して,単一のボリュームを維持できるマップ表現を提案する。
複数の動的オブジェクト追跡および再構成シナリオにおいて,本表現は,近接して移動する他のオブジェクトによって一時的にオクルードされても,表面の正確な再構成を維持できる。
提案したTSDF++の定式化を公開合成データセット上で評価し,標準のTSDFマップ表現と比較した場合の閉塞面の復元性を示す。
- 参考スコア(独自算出の注目度): 57.1209039399599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to simultaneously track and reconstruct multiple objects moving
in the scene is of the utmost importance for robotic tasks such as autonomous
navigation and interaction. Virtually all of the previous attempts to map
multiple dynamic objects have evolved to store individual objects in separate
reconstruction volumes and track the relative pose between them. While simple
and intuitive, such formulation does not scale well with respect to the number
of objects in the scene and introduces the need for an explicit occlusion
handling strategy. In contrast, we propose a map representation that allows
maintaining a single volume for the entire scene and all the objects therein.
To this end, we introduce a novel multi-object TSDF formulation that can encode
multiple object surfaces at any given location in the map. In a multiple
dynamic object tracking and reconstruction scenario, our representation allows
maintaining accurate reconstruction of surfaces even while they become
temporarily occluded by other objects moving in their proximity. We evaluate
the proposed TSDF++ formulation on a public synthetic dataset and demonstrate
its ability to preserve reconstructions of occluded surfaces when compared to
the standard TSDF map representation.
- Abstract(参考訳): シーン内を移動する複数の物体を同時に追跡および再構築する能力は、自律的なナビゲーションやインタラクションといったロボット作業において最も重要である。
事実上、複数の動的オブジェクトをマップする以前の試みはすべて、個々のオブジェクトを別々のレコンストラクションボリュームに格納し、それらの間の相対的なポーズを追跡するように進化しました。
シンプルで直感的ではあるが、このような定式化はシーン内のオブジェクト数に関してうまくスケールせず、明示的なオクルージョンハンドリング戦略の必要性をもたらす。
対照的に,シーン全体とそれに含まれるすべてのオブジェクトに対して,単一のボリュームを維持できるマップ表現を提案する。
この目的のために,地図上の任意の位置に複数の物体表面をエンコード可能な,新しい多目的TSDF定式化を導入する。
複数の動的オブジェクト追跡および再構成シナリオにおいて,本表現は,近接して移動する他のオブジェクトによって一時的にオクルードされても,表面の正確な再構成を維持できる。
提案したTSDF++の定式化を公開合成データセット上で評価し,標準のTSDFマップ表現と比較した場合の閉塞面の復元性を示す。
関連論文リスト
- Sparse multi-view hand-object reconstruction for unseen environments [31.604141859402187]
我々は、合成手オブジェクトデータセットに基づいてモデルをトレーニングし、実世界記録手オブジェクトデータセットを直接評価する。
目立たない手やオブジェクトをRGBから復元することは難しいが、追加の視点は再建の質を改善するのに役立つ。
論文 参考訳(メタデータ) (2024-05-02T15:01:25Z) - Iterative Superquadric Recomposition of 3D Objects from Multiple Views [77.53142165205283]
2次元ビューから直接3次元スーパークワッドリックを意味部品として用いたオブジェクトを再構成するフレームワークISCOを提案する。
我々のフレームワークは、再構成エラーが高い場合に、反復的に新しいスーパークワッドリックを追加します。
これは、野生の画像からでも、より正確な3D再構成を提供する。
論文 参考訳(メタデータ) (2023-09-05T10:21:37Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
本稿では,3次元オブジェクト認識キャラクタ合成における新しいシーンオブジェクトへのロバストさと一般化が,参照オブジェクトを1つも持たないモーションモデルをトレーニングすることで実現可能であることを示す。
我々は、オブジェクト専用のデータセットに基づいて訓練された暗黙的な特徴表現を活用し、オブジェクトの周りのSE(3)-同変記述体フィールドをエンコードする。
本研究では,3次元仮想キャラクタの動作と相互作用の質,および未知のオブジェクトを持つシナリオに対するロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-24T17:59:51Z) - AssetField: Assets Mining and Reconfiguration in Ground Feature Plane
Representation [111.59786941545774]
AssetFieldは、新しいニューラルシーン表現で、シーンを表現するためにオブジェクト対応のグラウンド特徴面のセットを学習する。
AssetFieldは、新しいシーン構成のためのリアルなレンダリングを生成するとともに、新規ビュー合成のための競争性能を実現する。
論文 参考訳(メタデータ) (2023-03-24T12:18:10Z) - Scene-level Tracking and Reconstruction without Object Priors [14.068026331380844]
本研究では,各シーンにおける可視物体の追跡と再構成を行うことのできる,初めてのリアルタイムシステムを提案する。
提案システムでは,新しいシーンにおける全可視物体のライブな形状と変形をリアルタイムに行うことができる。
論文 参考訳(メタデータ) (2022-10-07T20:56:14Z) - Learning to Complete Object Shapes for Object-level Mapping in Dynamic
Scenes [30.500198859451434]
本研究では,動的シーンにおけるオブジェクトの分割,追跡,再構築を同時に行うオブジェクトレベルのマッピングシステムを提案する。
さらに、深度入力とカテゴリレベルの前の形状からの再構成を条件にすることで、完全なジオメトリを予測し、完成させることができる。
実世界の合成シーケンスと実世界のシーケンスの両方で定量的に定性的にテストすることで,その有効性を評価する。
論文 参考訳(メタデータ) (2022-08-09T22:56:33Z) - Object-Compositional Neural Implicit Surfaces [45.274466719163925]
ニューラル暗示表現は、新しいビュー合成と多視点画像からの高品質な3D再構成においてその効果を示した。
本稿では,3次元再構成とオブジェクト表現に高い忠実性を有するオブジェクト合成型ニューラル暗黙表現を構築するための新しいフレームワークであるObjectSDFを提案する。
論文 参考訳(メタデータ) (2022-07-20T06:38:04Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Reconstructing Interactive 3D Scenes by Panoptic Mapping and CAD Model
Alignments [81.38641691636847]
エンボディエージェントの観点から,シーン再構築の問題を再考する。
rgb-dデータストリームを用いてインタラクティブシーンを再構築する。
この再構成されたシーンは、密集したパノプティカルマップのオブジェクトメッシュを、部分ベースのCADモデルに置き換える。
論文 参考訳(メタデータ) (2021-03-30T05:56:58Z) - MOLTR: Multiple Object Localisation, Tracking, and Reconstruction from
Monocular RGB Videos [30.541606989348377]
MOLTRはモノクロ画像シーケンスとカメラポーズのみを用いたオブジェクト中心マッピングのソリューションである。
rgbカメラが周囲のビデオをキャプチャすると、複数のオブジェクトをオンライン形式でローカライズし、追跡し、再構築することができる。
屋内および屋外シーンのベンチマークデータセットのローカリゼーション、追跡、および再構築を評価します。
論文 参考訳(メタデータ) (2020-12-09T23:15:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。