論文の概要: Substitutional Neural Image Compression
- arxiv url: http://arxiv.org/abs/2105.07512v1
- Date: Sun, 16 May 2021 20:53:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 15:05:22.509347
- Title: Substitutional Neural Image Compression
- Title(参考訳): 置換型ニューラルイメージ圧縮
- Authors: Xiao Wang, Wei Jiang, Wei Wang, Shan Liu, Brian Kulis, Peter Chin
- Abstract要約: 置換型ニューラルイメージ圧縮(snic)は、あらゆるニューラルイメージ圧縮モデルを強化する一般的なアプローチである。
フレキシブルな歪みメトリックに向けて圧縮性能を高め、単一のモデルインスタンスを使用したビットレート制御を可能にする。
- 参考スコア(独自算出の注目度): 48.20906717052056
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We describe Substitutional Neural Image Compression (SNIC), a general
approach for enhancing any neural image compression model, that requires no
data or additional tuning of the trained model. It boosts compression
performance toward a flexible distortion metric and enables bit-rate control
using a single model instance. The key idea is to replace the image to be
compressed with a substitutional one that outperforms the original one in a
desired way. Finding such a substitute is inherently difficult for conventional
codecs, yet surprisingly favorable for neural compression models thanks to
their fully differentiable structures. With gradients of a particular loss
backpropogated to the input, a desired substitute can be efficiently crafted
iteratively. We demonstrate the effectiveness of SNIC, when combined with
various neural compression models and target metrics, in improving compression
quality and performing bit-rate control measured by rate-distortion curves.
Empirical results of control precision and generation speed are also discussed.
- Abstract(参考訳): 本稿では,学習モデルのデータや追加チューニングを必要とせず,任意の画像圧縮モデルを拡張する一般的なアプローチである置換型ニューラルネットワーク圧縮(snic)について述べる。
フレキシブルな歪みメトリックに向けて圧縮性能を高め、単一のモデルインスタンスを使用したビットレート制御を可能にする。
鍵となるアイデアは、圧縮されるイメージを、元のイメージを望ましい方法で上回る置換イメージに置き換えることである。
このような代替物を見つけることは、従来のコーデックには本質的に難しいが、完全に微分可能な構造のおかげで、ニューラルネットワークモデルには驚くほど好ましい。
特定の損失の勾配を入力にバックプロパゲーションすることで、望ましい代替品を反復的に効率的に作成することができる。
本研究では,様々なニューラル圧縮モデルとターゲットメトリクスを組み合わせることで,snicの有効性を実証し,圧縮品質の向上とレート歪曲線によるビットレート制御を行う。
制御精度と生成速度の実証結果についても論じる。
関連論文リスト
- Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [57.056311855630916]
本稿では,制御可能な生成画像圧縮フレームワークである制御-GICを提案する。
高忠実度および一般性圧縮を確保しつつ、広帯域での微粒化適応を可能にする。
我々は、歴史的符号化された多粒度表現に遡ることができる条件条件付き条件付けを開発する。
論文 参考訳(メタデータ) (2024-06-02T14:22:09Z) - A Rate-Distortion-Classification Approach for Lossy Image Compression [0.0]
損失画像圧縮では、画像を特定のビットレートに圧縮しながら、最小限の信号歪みを実現する。
画像圧縮と視覚解析のギャップを埋めるために、損失画像圧縮のためのRDCモデルを提案する。
論文 参考訳(メタデータ) (2024-05-06T14:11:36Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
Invertible Activation Transformation (IAT) モジュールを提案する。
IATとQLevelは、画像圧縮モデルに、画像の忠実さを良く保ちながら、細かな可変レート制御能力を与える。
提案手法は,特に複数再符号化後に,最先端の可変レート画像圧縮法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-09-12T07:14:07Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z) - Slimmable Compressive Autoencoders for Practical Neural Image
Compression [20.715312224456138]
実画像圧縮のためのスリム圧縮オートエンコーダ(SlimCAEs)を提案する。
SlimCAEは、優れたレート歪み性能、可変率、メモリの動的調整、計算コスト、レイテンシを提供する柔軟性の高いモデルです。
論文 参考訳(メタデータ) (2021-03-29T16:12:04Z) - Asymmetric Gained Deep Image Compression With Continuous Rate Adaptation [12.009880944927069]
本稿では,非対称ゲイン変分オートエンコーダ(AG-VAE)の連続速度調整型画像圧縮フレームワークを提案する。
AG-VAEは、一組の利得単位を用いて、1つのモデルの離散レート適応を無視可能な追加計算で達成する。
提案手法は,SOTA学習画像圧縮手法を用いて,従来の画像コーデックよりも質的性能が向上する。
論文 参考訳(メタデータ) (2020-03-04T11:42:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。