論文の概要: Exploring Self-Supervised Representation Ensembles for COVID-19 Cough
Classification
- arxiv url: http://arxiv.org/abs/2105.07566v1
- Date: Mon, 17 May 2021 01:27:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:20:06.992391
- Title: Exploring Self-Supervised Representation Ensembles for COVID-19 Cough
Classification
- Title(参考訳): 自己教師付き表現アンサンブルによるcovid-19うつ分類の検討
- Authors: Hao Xue and Flora D. Salim
- Abstract要約: そこで本研究では,新しい自己教師付き学習フレームワークを提案する。
非ラベルデータでトランスフォーマベースの特徴エンコーダを訓練するために、コントラストプレトレーニングフェーズを導入する。
提案したコントラスト事前学習,ランダムマスキング機構,アンサンブルアーキテクチャが,コークス分類性能の向上に寄与していることを示す。
- 参考スコア(独自算出の注目度): 5.469841541565308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The usage of smartphone-collected respiratory sound, trained with deep
learning models, for detecting and classifying COVID-19 becomes popular
recently. It removes the need for in-person testing procedures especially for
rural regions where related medical supplies, experienced workers, and
equipment are limited. However, existing sound-based diagnostic approaches are
trained in a fully supervised manner, which requires large scale well-labelled
data. It is critical to discover new methods to leverage unlabelled respiratory
data, which can be obtained more easily. In this paper, we propose a novel
self-supervised learning enabled framework for COVID-19 cough classification. A
contrastive pre-training phase is introduced to train a Transformer-based
feature encoder with unlabelled data. Specifically, we design a random masking
mechanism to learn robust representations of respiratory sounds. The
pre-trained feature encoder is then fine-tuned in the downstream phase to
perform cough classification. In addition, different ensembles with varied
random masking rates are also explored in the downstream phase. Through
extensive evaluations, we demonstrate that the proposed contrastive
pre-training, the random masking mechanism, and the ensemble architecture
contribute to improving cough classification performance.
- Abstract(参考訳): 新型コロナウイルス(covid-19)の検出と分類に深層学習モデルで訓練されたスマートフォン型呼吸音が最近普及している。
特に、関連する医療物資、熟練労働者、設備が限られている農村地域では、対人検査の必要がなくなる。
しかし、既存の音響に基づく診断手法は、十分に教師された方法で訓練されている。
より容易に取得できる非ラベルの呼吸データを活用する新しい方法を見つけることが重要である。
本稿では,新型コロナウイルスのコークス分類のための自己教師付き学習支援フレームワークを提案する。
非ラベルデータでトランスフォーマベースの特徴エンコーダを訓練するために、コントラストプレトレーニングフェーズを導入する。
具体的には,呼吸音のロバスト表現を学習するためのランダムマスキング機構を設計する。
事前訓練された特徴エンコーダは下流フェーズで微調整され、cough分類を行う。
また,下流部ではランダムマスキング率の異なる異なるアンサンブルが検討されている。
広汎な評価により,提案したコントラスト事前学習,ランダムマスキング機構,アンサンブルアーキテクチャが,コークス分類性能の向上に寄与することを示した。
関連論文リスト
- Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
本稿では,大規模コークスデータセットを用いた自己教師型学習と教師型学習を併用したコークス病分類手法を提案する。
提案手法は、新型コロナウイルスの診断のための2つのベンチマークデータセットと、AUROC 92.5% の COPD/non-COPD 分類のためのプロプライエタリデータセットにおいて、先行技術よりも一貫して優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-08-28T09:40:40Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
本稿では,潜在空間における混合表現を識別するために,新規かつ効果的なパッチ・ミクス・コントラスト学習を提案する。
提案手法はICBHIデータセット上での最先端性能を実現し,4.08%の改善により先行先行スコアを上回った。
論文 参考訳(メタデータ) (2023-05-23T13:04:07Z) - Forward-Forward Contrastive Learning [4.465144120325802]
医用画像分類のための新しい事前学習手法として,前向きコントラスト学習(FFCL)を提案する。
FFCLは、肺炎分類タスクにおける既存の事前訓練モデルよりも、ImageNet Pretrained ResNet-18よりも3.69%の精度で性能が向上している。
論文 参考訳(メタデータ) (2023-05-04T15:29:06Z) - SPCXR: Self-supervised Pretraining using Chest X-rays Towards a Domain
Specific Foundation Model [4.397622801930704]
胸部X線(CXR)は肺疾患の診断と予後のための画像モダリティとして広く用いられている。
そこで我々は,グループメイドの自己教師型フレームワークを用いて,CXRからの一般的な表現を学習する,新たな自己教師型パラダイムを提案する。
事前訓練されたモデルは、コビッド19、肺炎の検出、一般的な健康スクリーニングといったドメイン固有のタスクのために微調整される。
論文 参考訳(メタデータ) (2022-11-23T13:38:16Z) - Exploring Target Representations for Masked Autoencoders [78.57196600585462]
目的表現の注意深い選択は、よい表現を学ぶために不要であることを示す。
本研究では,多段階のマスク蒸留パイプラインを提案し,無作為なモデルを教師として利用する。
自己指導型自己指導法を非自明なマージンで上回り, 自己指導型教員(dBOT)によるマスク付き知識蒸留を行う手法を提案する。
論文 参考訳(メタデータ) (2022-09-08T16:55:19Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - CNN-MoE based framework for classification of respiratory anomalies and
lung disease detection [33.45087488971683]
本稿では,聴取分析のための頑健な深層学習フレームワークを提示し,検討する。
呼吸周期の異常を分類し、呼吸音の記録から病気を検出することを目的としている。
論文 参考訳(メタデータ) (2020-04-04T21:45:06Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。