論文の概要: Open-set Recognition based on the Combination of Deep Learning and
Ensemble Method for Detecting Unknown Traffic Scenarios
- arxiv url: http://arxiv.org/abs/2105.07635v1
- Date: Mon, 17 May 2021 06:48:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:45:32.526107
- Title: Open-set Recognition based on the Combination of Deep Learning and
Ensemble Method for Detecting Unknown Traffic Scenarios
- Title(参考訳): 未知の交通シナリオ検出のための深層学習とアンサンブル法の組み合わせによるオープンセット認識
- Authors: Lakshman Balasubramanian, Friedrich Kruber, Michael Botsch and Ke Deng
- Abstract要約: 本研究では、Convolutional Neural Networks(CNN)とRandom Forest(RF)を組み合わせて、交通シナリオのオープンセット認識を提案する。
RFのアンサンブルの性質を継承することにより、極値理論と組み合わされた全ての木の投票パターンが未知のクラスを検出するのに適していることが示される。
- 参考スコア(独自算出の注目度): 0.9711326718689492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An understanding and classification of driving scenarios are important for
testing and development of autonomous driving functionalities. Machine learning
models are useful for scenario classification but most of them assume that data
received during the testing are from one of the classes used in the training.
This assumption is not true always because of the open environment where
vehicles operate. This is addressed by a new machine learning paradigm called
open-set recognition. Open-set recognition is the problem of assigning test
samples to one of the classes used in training or to an unknown class. This
work proposes a combination of Convolutional Neural Networks (CNN) and Random
Forest (RF) for open set recognition of traffic scenarios. CNNs are used for
the feature generation and the RF algorithm along with extreme value theory for
the detection of known and unknown classes. The proposed solution is featured
by exploring the vote patterns of trees in RF instead of just majority voting.
By inheriting the ensemble nature of RF, the vote pattern of all trees combined
with extreme value theory is shown to be well suited for detecting unknown
classes. The proposed method has been tested on the highD and OpenTraffic
datasets and has demonstrated superior performance in various aspects compared
to existing solutions.
- Abstract(参考訳): 自律運転機能のテストと開発には,運転シナリオの理解と分類が重要である。
機械学習モデルはシナリオ分類に有用であるが、ほとんどの場合、テスト中に受信したデータはトレーニングで使用されるクラスの1つであると仮定する。
この仮定は常に、車両が稼働するオープンな環境のためではない。
これはopen-set recognitionと呼ばれる新しい機械学習パラダイムによって対処される。
オープンセット認識は、トレーニングで使用されるクラスまたは未知のクラスにテストサンプルを割り当てる問題である。
本研究では、交通シナリオのオープンな認識のために、畳み込みニューラルネットワーク(CNN)とランダムフォレスト(RF)の組み合わせを提案する。
cnnは、既知のクラスや未知クラスを検出するための極値理論とともに、特徴生成とrfアルゴリズムに使用される。
提案されたソリューションは、多数決ではなくrfでツリーの投票パターンを調べることで特徴付けられる。
RFのアンサンブルの性質を継承することにより、極値理論と組み合わされた全ての木の投票パターンが未知のクラスを検出するのに適していることが示される。
提案手法はhighdおよびopentrafficデータセット上でテストされ、既存のソリューションと比較して様々な面で優れた性能を示している。
関連論文リスト
- Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
学習済みのモデルをオープンクラスに適応させることは、機械学習において難しい問題である。
本稿では,両者の利点を組み合わせたテスト時プロンプトチューニング手法を提案する。
提案手法は,基本クラスと新クラスの両方を考慮し,すべての比較手法を平均的に上回る結果を得た。
論文 参考訳(メタデータ) (2024-08-29T12:34:01Z) - ROG$_{PL}$: Robust Open-Set Graph Learning via Region-Based Prototype
Learning [52.60434474638983]
本稿では,複雑な雑音グラフデータに対する堅牢なオープンセット学習を実現するために,ROG$_PL$という統一フレームワークを提案する。
このフレームワークは2つのモジュール、すなわちラベルの伝搬による認知と、リージョンによるオープンセットのプロトタイプ学習で構成されている。
我々の知る限り、ROG$_PL$は複雑なノイズを持つグラフデータに対して、最初の堅牢なオープンセットノード分類法である。
論文 参考訳(メタデータ) (2024-02-28T17:25:06Z) - Exploring Diverse Representations for Open Set Recognition [51.39557024591446]
オープンセット認識(OSR)では、テスト中に未知のサンプルを拒絶しながら、クローズドセットに属するサンプルを分類する必要がある。
現在、生成モデルはOSRの差別モデルよりもよく機能している。
本稿では,多種多様な表現を識別的に学習するMulti-Expert Diverse Attention Fusion(MEDAF)を提案する。
論文 参考訳(メタデータ) (2024-01-12T11:40:22Z) - Open-Set Automatic Target Recognition [52.27048031302509]
オートマチックターゲット認識(Automatic Target Recognition、ATR)は、異なるセンサーから取得したデータに基づいてターゲットを認識しようとするコンピュータビジョンアルゴリズムのカテゴリである。
既存のATRアルゴリズムは、トレーニングとテストが同じクラス分布を持つ従来のクローズドセット手法向けに開発されている。
ATRアルゴリズムのオープンセット認識機能を実現するためのオープンセット自動ターゲット認識フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T21:28:24Z) - Opening Deep Neural Networks with Generative Models [2.0962464943252934]
本稿では,事前学習したDeep Neural Networksに付加して視覚認識を行うことのできる,シンプルでプラグアンドプレイなオープンセット認識モジュールGeMOSを提案する。
GeMOSフレームワークは、事前訓練された畳み込みニューラルネットワークと、オープンセット認識のための生成モデルを組み合わせて、サンプル毎にオープンセットスコアを抽出する。
提案手法を最先端のオープンセットアルゴリズムと比較して徹底的に評価し,GeMOSがより複雑でコストのかかるモデルよりも優れているか,あるいは統計的に区別できないかを見出した。
論文 参考訳(メタデータ) (2021-05-20T20:02:29Z) - Conditional Variational Capsule Network for Open Set Recognition [64.18600886936557]
オープンセット認識では、分類器はトレーニング時に未知の未知のクラスを検出する必要がある。
最近提案されたカプセルネットワークは、特に画像認識において、多くの分野で代替案を上回ることが示されている。
本提案では,訓練中,同じ既知のクラスのカプセルの特徴を,事前に定義されたガウス型に適合させることを推奨する。
論文 参考訳(メタデータ) (2021-04-19T09:39:30Z) - Collective Decision of One-vs-Rest Networks for Open Set Recognition [0.0]
厳密で洗練された決定境界を設定することでOSRの性能を最大化できるという直感に基づく,シンプルなオープンセット認識(OSR)手法を提案する。
提案手法は, オーバージェネリゼーションを効果的に低減し, 最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-18T13:06:46Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
オープンセット認識のための条件付き確率生成モデル(CPGM)を提案する。
CPGMは未知のサンプルを検出できるが、異なる潜在特徴を条件付きガウス分布に近似させることで、既知のクラスを分類できる。
複数のベンチマークデータセットの実験結果から,提案手法がベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-12T06:23:49Z) - One-vs-Rest Network-based Deep Probability Model for Open Set
Recognition [6.85316573653194]
インテリジェントな自己学習システムは、既知の例と未知の例を区別することができるべきである。
1-vs-restネットワークは、よく使われるSoftMaxレイヤよりも、未知の例に対して、より有益な隠れ表現を提供することができる。
提案した確率モデルは、オープンセットの分類シナリオにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-04-17T05:24:34Z) - Conditional Gaussian Distribution Learning for Open Set Recognition [10.90687687505665]
オープンセット認識のための条件付きガウス分布学習(CGDL)を提案する。
未知のサンプルを検出することに加えて、異なる潜伏特徴を異なるガウスモデルに近似させることにより、既知のサンプルを分類することもできる。
いくつかの標準画像に対する実験により,提案手法はベースライン法を著しく上回り,新たな最先端結果が得られることが明らかになった。
論文 参考訳(メタデータ) (2020-03-19T14:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。