Data Assimilation Predictive GAN (DA-PredGAN): applied to determine the
spread of COVID-19
- URL: http://arxiv.org/abs/2105.07729v1
- Date: Mon, 17 May 2021 10:56:53 GMT
- Title: Data Assimilation Predictive GAN (DA-PredGAN): applied to determine the
spread of COVID-19
- Authors: Vinicius L S Silva, Claire E Heaney, Yaqi Li, Christopher C Pain
- Abstract summary: We propose the novel use of a generative adversarial network (GAN) to make predictions in time (PredGAN) and to assimilate measurements (DA-PredGAN)
GANs have received much attention recently, after achieving excellent results for their generation of realistic-looking images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the novel use of a generative adversarial network (GAN) (i) to
make predictions in time (PredGAN) and (ii) to assimilate measurements
(DA-PredGAN). In the latter case, we take advantage of the natural adjoint-like
properties of generative models and the ability to simulate forwards and
backwards in time. GANs have received much attention recently, after achieving
excellent results for their generation of realistic-looking images. We wish to
explore how this property translates to new applications in computational
modelling and to exploit the adjoint-like properties for efficient data
assimilation. To predict the spread of COVID-19 in an idealised town, we apply
these methods to a compartmental model in epidemiology that is able to model
space and time variations. To do this, the GAN is set within a reduced-order
model (ROM), which uses a low-dimensional space for the spatial distribution of
the simulation states. Then the GAN learns the evolution of the low-dimensional
states over time. The results show that the proposed methods can accurately
predict the evolution of the high-fidelity numerical simulation, and can
efficiently assimilate observed data and determine the corresponding model
parameters.
Related papers
- Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
Diffusion models are trained to generate new geological realizations from input fields characterized by random noise.
Latent diffusion models are shown to provide realizations that are visually consistent with samples from geomodeling software.
arXiv Detail & Related papers (2024-06-21T01:32:03Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes (GPs) and neural networks to model surface wind gusts.
We discuss the effect of different modeling choices, as well as different degrees of approximation, and present our results for a case study.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations.
Due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI.
We propose a new paradigm for FWI regularized by generative diffusion models.
arXiv Detail & Related papers (2023-06-22T10:10:34Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.