論文の概要: Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2105.07768v1
- Date: Mon, 17 May 2021 12:19:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 14:38:22.530404
- Title: Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search
- Title(参考訳): ニューラルネットワークを用いた信号強度マップ再構成のための自己学習
- Authors: Aleksandra Malkova, Loic Pauletto, Christophe Villien, Benoit Denis,
Massih-Reza Amini
- Abstract要約: ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 63.39818029362661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a Neural Network (NN) model based on Neural
Architecture Search (NAS) and self-learning for received signal strength (RSS)
map reconstruction out of sparse single-snapshot input measurements, in the
case where data-augmentation by side deterministic simulations cannot be
performed. The approach first finds an optimal NN architecture and
simultaneously train the deduced model over some ground-truth measurements of a
given (RSS) map. These ground-truth measurements along with the predictions of
the model over a set of randomly chosen points are then used to train a second
NN model having the same architecture. Experimental results show that signal
predictions of this second model outperforms non-learning based interpolation
state-of-the-art techniques and NN models with no architecture search on five
large-scale maps of RSS measurements.
- Abstract(参考訳): 本稿では,ニューラルネットワークを用いたニューラルネットワーク(NN)モデルを提案する。一方,側決定論的シミュレーションによるデータ拡張を行なえない場合において,受信信号強度(RSS)マップ再構成のための自己学習を行う。
提案手法はまず、最適NNアーキテクチャを見つけ、与えられた(RSS)マップの基底構造測定に基づいて、推定されたモデルを同時に訓練する。
ランダムに選択された点の集合に対するモデルの予測と共に、これらの地表面の測定は、同じアーキテクチャを持つ第2のnnモデルを訓練するために使用される。
実験結果から,この第2モデルの信号予測は,RSS測定の大規模な5つのマップ上で,アーキテクチャ探索を行わない非学習ベース補間手法やNNモデルよりも優れていた。
関連論文リスト
- Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
本稿では,ネットワーク特性予測のためのニューラルネットワーク重み符号化手法を提案する。
我々のアプローチは、混合アーキテクチャのモデル動物園でニューラルネットワークを符号化することができる。
ニューラルネットワークのプロパティ予測には,クロスデータセットとクロスアーキテクチャという,2つの新しいタスクを導入する。
論文 参考訳(メタデータ) (2023-05-26T04:34:28Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Self Semi Supervised Neural Architecture Search for Semantic
Segmentation [6.488575826304023]
セグメンテーションの課題に対する自己監督と半教師付き学習に基づくニューラルアーキテクチャ検索戦略を提案する。
このアプローチは、このタスクに最適化されたニューラルネットワークモデルを構築します。
CityscapesとPASCAL VOC 2012データセットの実験では、発見されたニューラルネットワークは最先端の手作りNNモデルよりも効率的であることが示されている。
論文 参考訳(メタデータ) (2022-01-29T19:49:44Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
本稿では,コモディティ・チップセットと標準チャネル・サウンドによるWiFi機器の屋内位置推定について検討する。
本稿では、異なるアンテナで受信されたWiFiサブキャリアに対応するチャネル状態情報から特徴を抽出する、新しい浅層ニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:48:29Z) - Learning Variational Data Assimilation Models and Solvers [34.22350850350653]
データ同化のためのエンドツーエンドニューラルネットワークアーキテクチャを導入する。
提案するエンドツーエンド学習アーキテクチャの重要な特徴は、教師なし戦略と教師なし戦略の両方を用いてNNモデルをトレーニングできることである。
論文 参考訳(メタデータ) (2020-07-25T14:28:48Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Error-feedback stochastic modeling strategy for time series forecasting
with convolutional neural networks [11.162185201961174]
本稿では,ランダム畳み込みネットワーク(ESM-CNN)ニューラル時系列予測タスクを構築するための新しいError-feedback Modeling (ESM)戦略を提案する。
提案したESM-CNNは、最先端のランダムニューラルネットワークを上回るだけでなく、トレーニングされた最先端のディープニューラルネットワークモデルと比較して、予測能力と計算オーバーヘッドの低減も実現している。
論文 参考訳(メタデータ) (2020-02-03T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。