論文の概要: Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation
- arxiv url: http://arxiv.org/abs/2105.07830v1
- Date: Mon, 17 May 2021 13:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 21:46:22.538894
- Title: Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation
- Title(参考訳): 教師なしドメイン適応のための深度と意味論の学習
- Authors: Suman Saha, Anton Obukhov, Danda Pani Paudel, Menelaos Kanakis, Yuhua
Chen, Stamatios Georgoulis, Luc Van Gool
- Abstract要約: 教師なしドメイン適応(UDA)設定において,視覚的タスク関係を符号化してモデル性能を向上させる手法を提案する。
本稿では,意味的および深さ的予測のタスク依存性を符号化する新しいクロスタスク関係層(ctrl)を提案する。
さらに、セマンティック擬似ラベルを利用してターゲットドメインを監督する反復自己学習(ISL)トレーニングスキームを提案する。
- 参考スコア(独自算出の注目度): 87.1188556802942
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present an approach for encoding visual task relationships to improve
model performance in an Unsupervised Domain Adaptation (UDA) setting. Semantic
segmentation and monocular depth estimation are shown to be complementary
tasks; in a multi-task learning setting, a proper encoding of their
relationships can further improve performance on both tasks. Motivated by this
observation, we propose a novel Cross-Task Relation Layer (CTRL), which encodes
task dependencies between the semantic and depth predictions. To capture the
cross-task relationships, we propose a neural network architecture that
contains task-specific and cross-task refinement heads. Furthermore, we propose
an Iterative Self-Learning (ISL) training scheme, which exploits semantic
pseudo-labels to provide extra supervision on the target domain. We
experimentally observe improvements in both tasks' performance because the
complementary information present in these tasks is better captured.
Specifically, we show that: (1) our approach improves performance on all tasks
when they are complementary and mutually dependent; (2) the CTRL helps to
improve both semantic segmentation and depth estimation tasks performance in
the challenging UDA setting; (3) the proposed ISL training scheme further
improves the semantic segmentation performance. The implementation is available
at https://github.com/susaha/ctrl-uda.
- Abstract(参考訳): 教師なしドメイン適応(UDA)設定において,視覚的タスク関係を符号化してモデル性能を向上させる手法を提案する。
セマンティックセグメンテーションと単眼深度推定は相補的なタスクであることが示され、マルチタスク学習環境では、それらの関係の適切なエンコーディングは、両方のタスクのパフォーマンスをさらに向上させることができる。
そこで本研究では,意味的および深度予測のタスク依存性を符号化するクロスタスク関係層(CTRL)を提案する。
クロスタスク関係を捉えるために,タスク固有およびクロスタスク改善ヘッドを含むニューラルネットワークアーキテクチャを提案する。
さらに,semantic pseudo-labelsを活用した反復的自己学習(isl)トレーニングスキームを提案する。
これらのタスクの補完的な情報がより捕えられるので、両タスクのパフォーマンス改善を実験的に観察する。
具体的には,(1)補完的かつ相互依存的なタスクの全てのタスクのパフォーマンスを改善すること,(2)CTRLは,挑戦的なUDA設定におけるセマンティックセマンティックセマンティクスと深さ推定タスクの両方のパフォーマンスを改善すること,(3)提案したISLトレーニング手法により,セマンティクスセマンティクス性能をさらに向上すること,を示す。
実装はhttps://github.com/susaha/ctrl-udaで利用可能である。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
マルチタスク学習は、目標タスクを補助タスクと協調的に最適化することで、より優れたモデル一般化を約束する。
自己監督型(補助的)タスクと密接な予測(目標)タスクを共同でトレーニングすることで、目標タスクの性能を継続的に向上し、補助タスクのラベル付けの必要性を排除できることが判明した。
論文 参考訳(メタデータ) (2022-10-13T17:59:16Z) - Semantics-Depth-Symbiosis: Deeply Coupled Semi-Supervised Learning of
Semantics and Depth [83.94528876742096]
我々は,意味的セグメンテーションと深さ推定という2つの密なタスクのMTL問題に取り組み,クロスチャネル注意モジュール(CCAM)と呼ばれる新しいアテンションモジュールを提案する。
次に,AffineMixと呼ばれる予測深度を用いた意味分節タスクのための新しいデータ拡張と,ColorAugと呼ばれる予測セマンティクスを用いた単純な深度増分を定式化する。
最後に,提案手法の性能向上をCityscapesデータセットで検証し,深度と意味に基づく半教師付きジョイントモデルにおける最先端結果の実現を支援する。
論文 参考訳(メタデータ) (2022-06-21T17:40:55Z) - Counting with Adaptive Auxiliary Learning [23.715818463425503]
本稿では,オブジェクトカウント問題に対する適応型補助的タスク学習に基づくアプローチを提案する。
本研究では,タスク共有とタスクカスタマイズの両機能学習を実現するために,アダプティブ・アダプティブ・アダプティブ・共有バックボーンネットワークを開発した。
本手法は,現在最先端のタスク学習に基づくカウント手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-03-08T13:10:17Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
セマンティックセグメンテーションのためのドメイン適応は、ソースとターゲットドメイン間の分散シフトの存在下でモデルのパフォーマンスを向上させることを目的とする。
ドメイン間のギャップを埋めるために、両ドメインで利用可能な自己教師付き深さ推定からのガイダンスを活用します。
提案手法のベンチマークタスクSYNTHIA-to-CityscapesとGTA-to-Cityscapesの有効性を実証する。
論文 参考訳(メタデータ) (2021-04-28T07:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。