Automatic Fault Detection for Deep Learning Programs Using Graph
Transformations
- URL: http://arxiv.org/abs/2105.08095v2
- Date: Mon, 31 May 2021 02:17:12 GMT
- Title: Automatic Fault Detection for Deep Learning Programs Using Graph
Transformations
- Authors: Amin Nikanjam, Houssem Ben Braiek, Mohammad Mehdi Morovati, Foutse
Khomh
- Abstract summary: We propose NeuraLint, a model-based fault detection approach for Deep Learning programs.
NeuraLint effectively detects faults and design issues in both synthesized and real-world examples with a recall of 70.5 % and a precision of 100 %.
Although the proposed meta-model is designed for feedforward neural networks, it can be extended to support other neural network architectures.
- Score: 13.572917264310119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, we are witnessing an increasing demand in both corporates and
academia for exploiting Deep Learning (DL) to solve complex real-world
problems. A DL program encodes the network structure of a desirable DL model
and the process by which the model learns from the training dataset. Like any
software, a DL program can be faulty, which implies substantial challenges of
software quality assurance, especially in safety-critical domains. It is
therefore crucial to equip DL development teams with efficient fault detection
techniques and tools. In this paper, we propose NeuraLint, a model-based fault
detection approach for DL programs, using meta-modelling and graph
transformations. First, we design a meta-model for DL programs that includes
their base skeleton and fundamental properties. Then, we construct a
graph-based verification process that covers 23 rules defined on top of the
meta-model and implemented as graph transformations to detect faults and design
inefficiencies in the generated models (i.e., instances of the meta-model).
First, the proposed approach is evaluated by finding faults and design
inefficiencies in 28 synthesized examples built from common problems reported
in the literature. Then NeuraLint successfully finds 64 faults and design
inefficiencies in 34 real-world DL programs extracted from Stack Overflow posts
and GitHub repositories. The results show that NeuraLint effectively detects
faults and design issues in both synthesized and real-world examples with a
recall of 70.5 % and a precision of 100 %. Although the proposed meta-model is
designed for feedforward neural networks, it can be extended to support other
neural network architectures such as recurrent neural networks. Researchers can
also expand our set of verification rules to cover more types of issues in DL
programs.
Related papers
- DLBacktrace: A Model Agnostic Explainability for any Deep Learning Models [1.747623282473278]
Deep learning models operate as opaque 'black boxes' with limited transparency in their decision-making processes.
This study addresses the pressing need for interpretability in AI systems, emphasizing its role in fostering trust, ensuring accountability, and promoting responsible deployment in mission-critical fields.
We introduce DLBacktrace, an innovative technique developed by the AryaXAI team to illuminate model decisions across a wide array of domains.
arXiv Detail & Related papers (2024-11-19T16:54:30Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Sequential Graph Neural Networks for Source Code Vulnerability
Identification [5.582101184758527]
We present a properly curated C/C++ source code vulnerability dataset to aid in developing models.
We also propose a learning framework based on graph neural networks, denoted SEquential Graph Neural Network (SEGNN) for learning a large number of code semantic representations.
Our evaluations on two datasets and four baseline methods in a graph classification setting demonstrate state-of-the-art results.
arXiv Detail & Related papers (2023-05-23T17:25:51Z) - Deep Graph Reprogramming [112.34663053130073]
"Deep graph reprogramming" is a model reusing task tailored for graph neural networks (GNNs)
We propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.
arXiv Detail & Related papers (2023-04-28T02:04:29Z) - NeuRI: Diversifying DNN Generation via Inductive Rule Inference [16.463237407360594]
NeuRI is a fully automated approach for generating valid and diverse Deep Learning models.
NeuRI improves branch coverage of PyTorch by 24% and 15% over the state-of-the-art model-level fuzzers.
arXiv Detail & Related papers (2023-02-04T23:42:07Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - Precise Learning of Source Code Contextual Semantics via Hierarchical
Dependence Structure and Graph Attention Networks [28.212889828892664]
We propose a novel source code model embedded with hierarchical dependencies.
We introduce the syntactic structural of the basic block, i.e., its corresponding AST, in source code model to provide sufficient information.
The results show that our model reduces the scale of parameters by 50% and achieves 4% improvement on accuracy on program classification task.
arXiv Detail & Related papers (2021-11-20T04:03:42Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Design Smells in Deep Learning Programs: An Empirical Study [9.112172220055431]
Design smells in Deep Learning (DL) programs are poor design and-or configuration decisions taken during the development of DL components.
We present a catalogue of 8 design smells for a popular DL architecture, namely deep Feedforward Neural Networks.
arXiv Detail & Related papers (2021-07-05T21:26:05Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.