論文の概要: Modeling the EdNet Dataset with Logistic Regression
- arxiv url: http://arxiv.org/abs/2105.08150v1
- Date: Mon, 17 May 2021 20:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-20 02:42:56.145045
- Title: Modeling the EdNet Dataset with Logistic Regression
- Title(参考訳): ロジスティック回帰によるEdNetデータセットのモデリング
- Authors: Philip I. Pavlik Jr, Luke G. Eglington
- Abstract要約: 私たちは、教育データマイニングの観点から競争の経験を説明します。
我々は,kaggleシステムにおける基礎的結果と,その改善の可能性について考察した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many of these challenges are won by neural network models created by
full-time artificial intelligence scientists. Due to this origin, they have a
black-box character that makes their use and application less clear to learning
scientists. We describe our experience with competition from the perspective of
educational data mining, a field founded in the learning sciences and connected
with roots in psychology and statistics. We describe our efforts from the
perspectives of learning scientists and the challenges to our methods, some
real and some imagined. We also discuss some basic results in the Kaggle system
and our thoughts on how those results may have been improved. Finally, we
describe how learner model predictions are used to make pedagogical decisions
for students. Their practical use entails a) model predictions and b) a
decision rule (based on the predictions). We point out how increased model
accuracy can be of limited practical utility, especially when paired with
simple decision rules and argue instead for the need to further investigate
optimal decision rules.
- Abstract(参考訳): これらの課題の多くは、フルタイムの人工知能科学者によって生成されたニューラルネットワークモデルによって勝ち取られる。
この起源のため、彼らはブラックボックスの性格を持ち、その使用と学習科学者への適用を減らしている。
我々は,心理学と統計学のルーツと結びついた教育データマイニングの分野である,教育データマイニングの観点からの競争経験について述べる。
我々は、科学者の学習と方法への挑戦、現実的、あるいは想像的な視点から、我々の努力を説明する。
また,kaggleシステムにおける基礎的な結果と,その改善の可能性について考察した。
最後に,学習者モデル予測を用いて学生の教育的意思決定を行う方法について述べる。
彼らの実践的利用には、a)モデル予測と(b)決定規則(予測に基づく)が含まれる。
特に単純な決定規則と組み合わせた場合には,モデル精度の向上が実用性に限界があることを指摘し,その代わりに最適な決定規則をさらに検討する必要があると論じる。
関連論文リスト
- Leveraging Pedagogical Theories to Understand Student Learning Process with Graph-based Reasonable Knowledge Tracing [11.082908318943248]
本稿では,これらの問題に対処するためのグラフベースの合理的知識追跡手法GRKTを紹介する。
本稿では,知識検索,記憶強化,知識学習・鍛造の3段階モデリングプロセスを提案する。
論文 参考訳(メタデータ) (2024-06-07T10:14:30Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Evaluating the Explainers: Black-Box Explainable Machine Learning for
Student Success Prediction in MOOCs [5.241055914181294]
ブラックボックス機械学習モデルを説明するための5つの最先端手法を実装した。
学生のパフォーマンス予測の下流課題に対する各アプローチの強みについて検討する。
この結果は,説明者の選択が重要な決定である,という結論に至った。
論文 参考訳(メタデータ) (2022-07-01T17:09:17Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
我々は3つの自然言語処理とコンピュータビジョンタスクのモデルを訓練する。
筆者らは,本フレームワークで抽出した説明文を学習した学生が,従来の手法よりもはるかに効果的に教師をシミュレートできることを発見した。
論文 参考訳(メタデータ) (2022-04-22T16:43:39Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Mixture of Linear Models Co-supervised by Deep Neural Networks [14.831346286039151]
本稿では,比較的単純な説明可能なモデルとディープニューラルネットワーク(DNN)モデルとのギャップを埋めるためのアプローチを提案する。
私たちの主なアイデアは、DNNからのガイダンスでトレーニングされた差別モデルの組み合わせです。
論文 参考訳(メタデータ) (2021-08-05T02:08:35Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
本稿では,視覚概念学習のための質問応答型カリキュラムを提案する。
視覚概念を学習するためのニューラルシンボリックな概念学習者と学習プロセスを導くための多次元項目応答理論(mIRT)モデルを設計する。
CLEVRの実験結果から,コンピテンスを意識したカリキュラムにより,提案手法は最先端のパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2020-07-03T05:08:09Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。