論文の概要: Physically Plausible Pose Refinement using Fully Differentiable Forces
- arxiv url: http://arxiv.org/abs/2105.08196v1
- Date: Mon, 17 May 2021 23:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-20 01:48:53.780697
- Title: Physically Plausible Pose Refinement using Fully Differentiable Forces
- Title(参考訳): 完全微分力を用いた物理的にプラズブルなポースリファインメント
- Authors: Akarsh Kumar (1), Aditya R. Vaidya (1), Alexander G. Huth (1) ((1) The
University of Texas at Austin)
- Abstract要約: 対象物が経験する力を学習することでポーズ推定を精緻化するエンドツーエンドの差別化モデルを提案する。
学習されたネット力と有限位置差に基づくネット力の推定とをマッチングすることにより、このモデルは物体の動きを正確に記述する力を見つけることができる。
rgbや深度画像のデータを使わずに、このモデルがポーズの修正に成功し、接点マップが地面の真実に合致することを示す。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: All hand-object interaction is controlled by forces that the two bodies exert
on each other, but little work has been done in modeling these underlying
forces when doing pose and contact estimation from RGB/RGB-D data. Given the
pose of the hand and object from any pose estimation system, we propose an
end-to-end differentiable model that refines pose estimates by learning the
forces experienced by the object at each vertex in its mesh. By matching the
learned net force to an estimate of net force based on finite differences of
position, this model is able to find forces that accurately describe the
movement of the object, while resolving issues like mesh interpenetration and
lack of contact. Evaluating on the ContactPose dataset, we show this model
successfully corrects poses and finds contact maps that better match the ground
truth, despite not using any RGB or depth image data.
- Abstract(参考訳): すべての手動物体の相互作用は、2つの物体が互いに作用する力によって制御されるが、RGB/RGB-Dデータからのポーズや接触推定を行う際の基礎となる力をモデル化する作業はほとんど行われていない。
任意のポーズ推定システムから手と物体の姿勢を仮定し,メッシュ内の各頂点において物体が経験する力について学習することにより姿勢推定を洗練するエンドツーエンドの微分可能モデルを提案する。
学習したネット力と有限位置差に基づくネット力の推定値とをマッチングすることにより、メッシュの相互接続や接触の欠如といった問題を解きながら、物体の動きを正確に記述する力を見つけることができる。
このモデルでは,rgbや奥行き画像データを使用しないのに,接点を正しく修正し,基底の真理に合致するコンタクトマップを見出すことができる。
関連論文リスト
- Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation [52.36691633451968]
ViTaM-Dは動的手動物体相互作用再構成のための視覚触覚フレームワークである。
DF-Fieldは分散力認識型接触表現モデルである。
剛性および変形性のある物体再構成におけるViTaM-Dの優れた性能について検討した。
論文 参考訳(メタデータ) (2024-11-14T16:29:45Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
現在のアプローチは、多数の離散的なポーズ仮説を持つ連続的なポーズ表現を近似している。
本稿では,DVMNet(Deep Voxel Matching Network)を提案する。
提案手法は,最先端の手法に比べて計算コストの低い新しいオブジェクトに対して,より正確なポーズ推定を行う。
論文 参考訳(メタデータ) (2024-03-20T15:41:32Z) - Physical Interaction: Reconstructing Hand-object Interactions with
Physics [17.90852804328213]
本稿では, 復元のあいまいさを解消する物理に基づく手法を提案する。
まず、手動物体の力に基づく動的モデルを提案し、これは観測されていない接触を回復し、また可塑性接触力の解法である。
実験により,提案手法は物理的に可塑性とより正確な手-物体相互作用の両方を再構成することを示した。
論文 参考訳(メタデータ) (2022-09-22T07:41:31Z) - Tac2Pose: Tactile Object Pose Estimation from the First Touch [6.321662423735226]
触覚ポーズ推定のためのオブジェクト固有のアプローチであるTac2Poseを提案する。
我々は、高密度な物体のポーズがセンサーに生み出す接触形状をシミュレートする。
我々は、RGBの触覚観測を2値の接触形状にマッピングする、物体に依存しないキャリブレーションステップでセンサから接触形状を得る。
論文 参考訳(メタデータ) (2022-04-25T14:43:48Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
我々の研究は、単一のRGB画像からハンドヘルドオブジェクトを再構築することを目的としている。
通常、既知の3Dテンプレートを仮定し、問題を3Dポーズ推定に還元する以前の作業とは対照的に、我々の作業は3Dテンプレートを知らずに汎用的なハンドヘルドオブジェクトを再構成する。
論文 参考訳(メタデータ) (2022-04-14T17:59:02Z) - Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose
Estimation [44.8872454995923]
単一オートエンコーダを用いた複数オブジェクトの合成データに対する自己教師付き学習により,スケーラブルな6次元ポーズ推定のための新しい手法を提案する。
提案手法は,T-LESS と NOCS REAL275 という実データを持つ2つのマルチオブジェクトベンチマークで検証し,ポーズ推定精度と一般化の点で既存の RGB 法より優れていることを示す。
論文 参考訳(メタデータ) (2021-07-27T01:55:30Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
本稿では,ビデオ中のフレームの粗いサブセットに対してのみアノテーションが利用できる場合に,時間とともに光度整合性を活用する手法を提案する。
本モデルでは,ポーズを推定することにより,手や物体を3Dで共同で再構成するカラーイメージをエンドツーエンドに訓練する。
提案手法は,3次元手動画像再構成の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-04-28T12:03:14Z) - Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and
Objects for 3D Hand Pose Estimation under Hand-Object Interaction [137.28465645405655]
HANDS'19は、現在の3Dハンドポーズ推定器(HPE)がトレーニングセットのポーズを補間し、外挿する能力を評価するための課題である。
本研究では,最先端手法の精度が低下し,トレーニングセットから外れたポーズでほとんど失敗することを示す。
論文 参考訳(メタデータ) (2020-03-30T19:28:13Z) - Robust, Occlusion-aware Pose Estimation for Objects Grasped by Adaptive
Hands [16.343365158924183]
内部操作のような操作タスクは、ロボットハンドに対してオブジェクトのポーズを必要とする。
本稿では,頑健なポーズ推定と応答時間の短縮を目的とした奥行きに基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-07T05:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。