Phase sensitive quantum spectroscopy with high frequency resolution
- URL: http://arxiv.org/abs/2105.08381v2
- Date: Mon, 11 Jul 2022 08:10:26 GMT
- Title: Phase sensitive quantum spectroscopy with high frequency resolution
- Authors: Nicolas Staudenmaier, Simon Schmitt, Liam P. McGuinness, Fedor Jelezko
- Abstract summary: We present a measurement protocol for quantum probes which enables full signal reconstruction on a nanoscale spatial resolution up to potentially 100,GHz.
We achieve $58,mathrmnT/sqrtHz$ amplitude and $0.095,mathrmrad/sqrtHz$ phase sensitivity and a relative frequency uncertainty of $10-12$ for a $1.51,mathrmGHz$ signal within $10,mathrms$ of integration.
- Score: 4.355440821669468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical sensors for spectrum analysis are widely used but lack micro- or
nanoscale spatial resolution. On the other hand, quantum sensors, capable of
working with nanoscale precision, do not provide precise frequency resolution
over a wide range of frequencies. Using a single spin in diamond, we present a
measurement protocol for quantum probes which enables full signal
reconstruction on a nanoscale spatial resolution up to potentially 100\,GHz. We
achieve $58\,\mathrm{nT/\sqrt{Hz}}$ amplitude and
$0.095\,\mathrm{rad/\sqrt{Hz}}$ phase sensitivity and a relative frequency
uncertainty of $10^{-12}$ for a $1.51\,\mathrm{GHz}$ signal within
$10\,\mathrm{s}$ of integration. This technique opens the way to quantum
spectrum analysis methods with potential applications in electron spin
detection and nanocircuitry in quantum technologies.
Related papers
- Continuous drive heterodyne microwave sensing with spin qubits in hexagonal boron nitride [5.658970628961091]
We present a control scheme based on a continuous microwave drive that extends spin towards the effective $T approx 12T$ limit.
The scheme achieves an amplitude sensitivity of $eta approx 3-5 :mathrmmu T sqrtHz$ and phase sensitivity of $eta_phi approx 0.076 :mathrmrads sqrtHz$.
arXiv Detail & Related papers (2024-06-24T21:24:45Z) - Quantum spectral analysis by continuous measurement of Landau-Zener
transitions [0.0]
We demonstrate the simultaneous estimation of signal frequency and amplitude by a single quantum sensor in a single experimental shot.
We sense a magnetic signal with $20textpT$ precision in amplitude, and near-transform-limited precision in frequency, in a single $300textms$ sweep from $7$ to $13textkHz$.
The protocol realizes a swept-sine quantum spectrum analyzer, potentially sensing hundreds or thousands of channels with a single quantum sensor.
arXiv Detail & Related papers (2023-06-02T15:37:26Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Magnetic field imaging by hBN quantum sensor nanoarray [1.559812637550576]
We demonstrate high-spatial-resolution magnetic field imaging with a boron vacancy (V$_textB-$) defects array in hexagonal boron nitride with a few 10 nm thickness.
The sensor array allows us to visualize the magnetic field induced by the current in the wire with a spatial resolution beyond the diffraction limit.
arXiv Detail & Related papers (2023-01-30T03:54:19Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Very-high- and ultrahigh- frequency electric field detection using high
angular momentum Rydberg states [0.0]
We demonstrate resonant detection of very-high-frequency (VHF) to ultra-high-frequency (UHF)
We find good agreement between measured spectra and predictions of quantum defect theory for principal quantum numbers $n=45$ to $70$.
We utilize data and a numerical model incorporating a five-level master equation solution to estimate the fundamental sensitivity limits of our system.
arXiv Detail & Related papers (2022-05-25T15:48:28Z) - Quantum-assisted Distortion-free audio signal sensing [2.530512865260924]
We develop a quantum-assisted distortion-free audio signal (melody, speech) sensing with high fidelity.
The methods could broaden the horizon for quantum sensors towards applications in telecommunication.
arXiv Detail & Related papers (2021-11-07T14:40:58Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.