Quantum spectral analysis by continuous measurement of Landau-Zener
transitions
- URL: http://arxiv.org/abs/2306.01622v4
- Date: Thu, 7 Dec 2023 05:42:30 GMT
- Title: Quantum spectral analysis by continuous measurement of Landau-Zener
transitions
- Authors: Christopher C. Bounds, Josh P. Duff, Alex Tritt, Hamish A. M. Taylor,
George X. Coe, Sam J. White, L. D. Turner (School of Physics and Astronomy,
Monash University, Melbourne, Australia)
- Abstract summary: We demonstrate the simultaneous estimation of signal frequency and amplitude by a single quantum sensor in a single experimental shot.
We sense a magnetic signal with $20textpT$ precision in amplitude, and near-transform-limited precision in frequency, in a single $300textms$ sweep from $7$ to $13textkHz$.
The protocol realizes a swept-sine quantum spectrum analyzer, potentially sensing hundreds or thousands of channels with a single quantum sensor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We demonstrate the simultaneous estimation of signal frequency and amplitude
by a single quantum sensor in a single experimental shot. Sweeping the qubit
splitting linearly across a span of frequencies induces a non-adiabatic
Landau-Zener transition as the qubit crosses resonance. The signal frequency
determines the time of the transition, and the amplitude its extent. Continuous
weak measurement of this unitary evolution informs a parameter estimator
retrieving precision measurements of frequency and amplitude. Implemented on
radiofrequency-dressed ultracold atoms read out by a Faraday spin-light
interface, we sense a magnetic signal with $20~\text{pT}$ precision in
amplitude, and near-transform-limited precision in frequency, in a single
$300~\text{ms}$ sweep from $7$ to $13~\text{kHz}$. The protocol realizes a
swept-sine quantum spectrum analyzer, potentially sensing hundreds or thousands
of channels with a single quantum sensor.
Related papers
- Continuous drive heterodyne microwave sensing with spin qubits in hexagonal boron nitride [5.658970628961091]
We present a control scheme based on a continuous microwave drive that extends spin towards the effective $T approx 12T$ limit.
The scheme achieves an amplitude sensitivity of $eta approx 3-5 :mathrmmu T sqrtHz$ and phase sensitivity of $eta_phi approx 0.076 :mathrmrads sqrtHz$.
arXiv Detail & Related papers (2024-06-24T21:24:45Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Quantum-assisted Distortion-free audio signal sensing [2.530512865260924]
We develop a quantum-assisted distortion-free audio signal (melody, speech) sensing with high fidelity.
The methods could broaden the horizon for quantum sensors towards applications in telecommunication.
arXiv Detail & Related papers (2021-11-07T14:40:58Z) - Bell state analyzer for spectrally distinct photons [0.0]
We demonstrate a Bell state analyzer that operates directly on frequency mismatch.
Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes.
arXiv Detail & Related papers (2021-09-14T01:23:57Z) - Phase sensitive quantum spectroscopy with high frequency resolution [4.355440821669468]
We present a measurement protocol for quantum probes which enables full signal reconstruction on a nanoscale spatial resolution up to potentially 100,GHz.
We achieve $58,mathrmnT/sqrtHz$ amplitude and $0.095,mathrmrad/sqrtHz$ phase sensitivity and a relative frequency uncertainty of $10-12$ for a $1.51,mathrmGHz$ signal within $10,mathrms$ of integration.
arXiv Detail & Related papers (2021-05-18T09:11:06Z) - Many-body quantum lock-in amplifier [0.0]
We present a protocol for achieving an entanglement-enhanced lock-in amplifier.
By selecting suitable input states and readout operations, the frequency and amplitude of an unknown alternating field can be simultaneously extracted.
Our study may point out a new direction for measuring time-dependent signals with many-body quantum systems.
arXiv Detail & Related papers (2020-10-14T07:24:39Z) - High-Frequency Gravitational-Wave Detection Using a Chiral Resonant
Mechanical Element and a Short Unstable Optical Cavity [59.66860395002946]
We suggest the measurement of the twist of a chiral mechanical element induced by a gravitational wave.
The induced twist rotates a flat optical mirror on top of this chiral element, leading to the deflection of an incident laser beam.
We estimate a gravitational wave strain sensitivity between 10-21/sqrtHz and 10-23/sqrtHz at around 10 kHz frequency.
arXiv Detail & Related papers (2020-07-15T20:09:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.