Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques
- URL: http://arxiv.org/abs/2105.08446v1
- Date: Tue, 18 May 2021 11:37:57 GMT
- Title: Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques
- Authors: Alejandro Puente-Castro, Enrique Fernandez-Blanco, Alejandro Pazos,
Cristian R. Munteanu
- Abstract summary: This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
- Score: 111.165389441988
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Early detection is crucial to prevent the progression of Alzheimer's disease
(AD). Thus, specialists can begin preventive treatment as soon as possible.
They demand fast and precise assessment in the diagnosis of AD in the earliest
and hardest to detect stages. The main objective of this work is to develop a
system that automatically detects the presence of the disease in sagittal
magnetic resonance images (MRI), which are not generally used. Sagittal MRIs
from ADNI and OASIS data sets were employed. Experiments were conducted using
Transfer Learning (TL) techniques in order to achieve more accurate results.
There are two main conclusions to be drawn from this work: first, the damages
related to AD and its stages can be distinguished in sagittal MRI and, second,
the results obtained using DL models with sagittal MRIs are similar to the
state-of-the-art, which uses the horizontal-plane MRI. Although sagittal-plane
MRIs are not commonly used, this work proved that they were, at least, as
effective as MRI from other planes at identifying AD in early stages. This
could pave the way for further research. Finally, one should bear in mind that
in certain fields, obtaining the examples for a data set can be very expensive.
This study proved that DL models could be built in these fields, whereas TL is
an essential tool for completing the task with fewer examples.
Related papers
- Automatic Autism Spectrum Disorder Detection Using Artificial
Intelligence Methods with MRI Neuroimaging: A Review [11.1297848681272]
Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD.
This study aims to review the automated detection of ASD using AI.
arXiv Detail & Related papers (2022-06-20T16:14:21Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Input Agnostic Deep Learning for Alzheimer's Disease Classification
Using Multimodal MRI Images [1.4848525762485871]
Alzheimer's disease (AD) is a progressive brain disorder that causes memory and functional impairments.
In this work, we utilize a multi-modal deep learning approach in classifying normal cognition, mild cognitive impairment and AD classes.
arXiv Detail & Related papers (2021-07-19T08:19:34Z) - Exploring and Distilling Posterior and Prior Knowledge for Radiology
Report Generation [55.00308939833555]
The PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD)
PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias.
PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias.
arXiv Detail & Related papers (2021-06-13T11:10:02Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
Our proposed deep-learning model ASD-DiagNet exhibits consistently high accuracy for classification of ASD brain scans from neurotypical scans.
Our method, called Auto-ASD-Network, uses a combination of deep-learning and Support Vector Machines (SVM) to classify ASD scans from neurotypical scans.
arXiv Detail & Related papers (2020-03-02T18:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.