論文の概要: Semi-Supervised Classification and Segmentation on High Resolution
Aerial Images
- arxiv url: http://arxiv.org/abs/2105.08655v1
- Date: Sun, 16 May 2021 09:30:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-19 14:14:49.257773
- Title: Semi-Supervised Classification and Segmentation on High Resolution
Aerial Images
- Title(参考訳): 高分解能空中画像の半教師あり分類とセグメンテーション
- Authors: Sahil Khose, Abhiraj Tiwari, Ankita Ghosh
- Abstract要約: FloodNetは、小さなUAVプラットフォームであるDJI Mavic ProクワッドコプターによってHurricane Harveyにちなんで取得された高解像度の画像データセットである。
このデータセットは、災害後のシナリオに対する損傷評価プロセスを進めるというユニークな課題を示しています。
分類とセマンティックセグメンテーションの課題に対処するソリューションを提案します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: FloodNet is a high-resolution image dataset acquired by a small UAV platform,
DJI Mavic Pro quadcopters, after Hurricane Harvey. The dataset presents a
unique challenge of advancing the damage assessment process for post-disaster
scenarios using unlabeled and limited labeled dataset. We propose a solution to
address their classification and semantic segmentation challenge. We approach
this problem by generating pseudo labels for both classification and
segmentation during training and slowly incrementing the amount by which the
pseudo label loss affects the final loss. Using this semi-supervised method of
training helped us improve our baseline supervised loss by a huge margin for
classification, allowing the model to generalize and perform better on the
validation and test splits of the dataset. In this paper, we compare and
contrast the various methods and models for image classification and semantic
segmentation on the FloodNet dataset.
- Abstract(参考訳): FloodNetは、小さなUAVプラットフォームであるDJI Mavic ProクワッドコプターによってHurricane Harveyにちなんで取得された高解像度の画像データセットである。
このデータセットはラベルなしかつ限定されたラベル付きデータセットを使用して、障害後のシナリオの損傷評価プロセスを前進させるユニークな課題を示す。
分類とセマンティックセグメンテーションの課題に対処する解決策を提案する。
学習中の分類とセグメンテーションの両方に擬似ラベルを生成し,擬似ラベル損失が最終損失に与える影響を緩やかに増やすことでこの問題にアプローチする。
この半教師付きトレーニング手法を用いることで、分類のための巨大なマージンによってベースラインの教師付き損失を改善することができ、モデルがデータセットの検証とテストの分割を一般化し、より良く行うことができる。
本稿では,FloodNetデータセット上の画像分類とセマンティックセグメンテーションのための様々な手法とモデルを比較し,比較する。
関連論文リスト
- Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot
Classification [49.36348058247138]
トレーニング段階において,対象領域内のラベルなし画像のごく一部をアクセス可能にすることで,ドメイン間数ショット分類の問題に対処する。
我々は,対象データセットのより識別的な特徴を抽出するモデルの能力を高めるため,クロスレベルな知識蒸留法を慎重に設計する。
提案手法は,従来の動的蒸留法を5.44%,1.37%,5ショット分類法を1.37%超えることができる。
論文 参考訳(メタデータ) (2023-11-04T12:28:04Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation [5.484296906525601]
半教師付きセマンティックセグメンテーションは、いくつかのラベル付きサンプルと多数のラベルなし画像を使用して、ピクセルを特定のクラスに分類するモデルを学ぶ。
半教師付きセマンティックセグメンテーション(CAFS)のためのクラス適応型セミスーパービジョンフレームワークを提案する。
CAFSはラベル付きデータセットに検証セットを構築し、各クラスの校正性能を活用する。
論文 参考訳(メタデータ) (2023-03-21T05:56:53Z) - Learning Confident Classifiers in the Presence of Label Noise [5.829762367794509]
本稿では,ノイズ観測のための確率論的モデルを提案し,信頼性の高い分類とセグメンテーションモデルの構築を可能にする。
実験により,本アルゴリズムは,検討された分類問題と分割問題に対して,最先端の解よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-01-02T04:27:25Z) - AdaWAC: Adaptively Weighted Augmentation Consistency Regularization for
Volumetric Medical Image Segmentation [3.609538870261841]
本稿では,容積医用画像分割のための適応重み付けアルゴリズムを提案する。
AdaWACは、ラベルセンスサンプルを教師付きクロスエントロピー損失とラベルスパースサンプルを整合正則化に割り当てる。
我々は,AdaWACがセグメンテーション性能とサンプル効率を向上させるだけでなく,ラベルのサブポピュレーションシフトに対するロバスト性を向上させることを実証的に実証した。
論文 参考訳(メタデータ) (2022-10-04T20:28:38Z) - Learning Semantic Segmentation from Multiple Datasets with Label Shifts [101.24334184653355]
本論文では,ラベル空間が異なる複数のデータセットを対象としたモデルの自動学習手法であるUniSegを提案する。
具体的には,ラベルの相反と共起を考慮に入れた2つの損失を提案する。
論文 参考訳(メタデータ) (2022-02-28T18:55:19Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
そこで本研究では,モデル性能を向上させるために,未ラベルの点群をトレーニングに採用するための半教師付き点群セマンティックセマンティックセマンティックセマンティクスを提案する。
近年の自己監督型タスクのコントラスト損失に触発されて,特徴表現とモデル一般化能力を高めるためのガイド付きポイントコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-10-15T16:38:54Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
本稿では,半弱化アノテーションを用いた表現学習のための,半弱化教師付きコントラスト学習フレームワークを提案する。
SWCLの移動学習性能を7つの公立網膜眼底データセットで実証的に検証した。
論文 参考訳(メタデータ) (2021-08-04T15:50:09Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
本稿では, 大規模無教師付きセマンティックセマンティックセグメンテーション (LUSS) の新たな課題を提案する。
ImageNetデータセットに基づいて、120万のトレーニング画像と40万の高品質なセマンティックセグメンテーションアノテーションを用いた画像Net-Sデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-06T15:02:11Z) - Comprehensive Semantic Segmentation on High Resolution UAV Imagery for
Natural Disaster Damage Assessment [0.26249027950824505]
災害シナリオにおける視覚知覚のための大規模ハリケーン・マイケルデータセットを提案する。
セマンティックセグメンテーションのための最先端のディープニューラルネットワークモデルを分析する。
論文 参考訳(メタデータ) (2020-09-02T17:07:28Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
本稿では,局所的なワンホット分類とグローバルなマルチクラス分類を組み合わせることで,視覚的・時間的整合性を両立させる。
3つの大規模ReIDデータセットの実験結果は、教師なしと教師なしの両方のドメイン適応型ReIDタスクにおいて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2020-07-21T14:31:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。