Collective Effects of Organic Molecules based on Holstein-Tavis-Cummings
Model
- URL: http://arxiv.org/abs/2105.08775v1
- Date: Tue, 18 May 2021 18:45:09 GMT
- Title: Collective Effects of Organic Molecules based on Holstein-Tavis-Cummings
Model
- Authors: Quansheng Zhang and Ke Zhang
- Abstract summary: We analytically obtain the expression of the cavity transmission spectrum to analyze the features of polaritonic states.
As an application, we show that the dependence for the frequency shift of the lower polaritonic state on the number of molecules can be used in the detection of the ultra-cold molecules.
- Score: 1.819714933798177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the collective effects of an ensemble of organic molecules confined
in an optical cavity based on Holstein-Tavis-Cummings model. By using the
quantum Langevin approach and adiabatically eliminating the degree of freedom
of the vibrational motion, we analytically obtain the expression of the cavity
transmission spectrum to analyze the features of polaritonic states. As an
application, we show that the dependence for the frequency shift of the lower
polaritonic state on the number of molecules can be used in the detection of
the ultra-cold molecules. We also numerically analyze the fluorescence
spectrum. The variation of the spectral profile with various numbers of
molecules gives signatures for the modification of molecular conformation.
Related papers
- Semiclassical truncated-Wigner-approximation theory of
molecular-vibration-polariton dynamics in optical cavities [0.0]
We develop here the semiclassical theory of molecular-vibration-polariton dynamics based on the truncated Wigner approximation (TWA)
The validity of TWA is examined by comparing it with the fully quantum dynamics of a single-molecule system.
The collective and resonance effects of molecular-vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
arXiv Detail & Related papers (2023-11-14T01:06:22Z) - Towards equilibrium molecular conformation generation with GFlowNets [90.29728873459774]
We propose to use GFlowNet for sampling conformations of small molecules from the Boltzmann distribution, as determined by the molecule's energy.
We demonstrate that GFlowNet can reproduce molecular potential energy surfaces by sampling proportionally to the Boltzmann distribution.
arXiv Detail & Related papers (2023-10-20T15:41:50Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Vibrational strong coupling in liquid water from cavity molecular
dynamics [0.0]
We show that our simulated cavity spectra can be reproduced to graphical accuracy with a harmonic model.
We conclude that cavity molecular dynamics cannot provide any more insight into the effect of vibrational strong coupling on the absorption spectrum.
arXiv Detail & Related papers (2023-05-04T10:33:14Z) - Rydberg atom-enabled spectroscopy of polar molecules via F\"orster
resonance energy transfer [0.0]
Rydberg atom-enabled spectroscopy is feasible with current experimental technology.
Non-radiative energy transfer between a Rydberg atom and a polar molecule can be controlled by a DC electric field.
arXiv Detail & Related papers (2022-05-09T14:31:12Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Simulation of absorption spectra of molecular aggregates: a Hierarchy of
Stochastic Pure States approach [68.8204255655161]
hierarchy of pure states (HOPS) provides a formally exact solution based on local, trajectories.
Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories.
arXiv Detail & Related papers (2021-11-01T16:59:54Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Disordered ensembles of strongly coupled single-molecule plasmonic
picocavities as nonlinear optical metamaterials [0.0]
We propose to use molecular picocavity ensembles as macroscopic coherent nonlinear optical devices enabled by nanoscale strong coupling.
For a realistic molecular disorder model, we demonstrate that cross-phase modulation of optical fields as weak as 10 kW/cm$2$ is feasible using dilute ensembles of molecular picocavities at room temperature.
arXiv Detail & Related papers (2021-04-02T02:12:36Z) - Phonon-induced optical dephasing in single organic molecules [0.0]
We present a joint experiment--theory analysis of the temperature-dependent emission spectra, zero-phonon linewidth, and second-order correlation function of light emitted from a single molecule.
Our results constitute an essential characterisation of the photon coherence of these promising molecules, paving the way towards their use in future quantum information applications.
arXiv Detail & Related papers (2020-01-13T16:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.