Molecular Axis Distribution Moments in Ultrafast Transient Absorption Spectroscopy: A Path Towards Ultrafast Quantum State Tomography
- URL: http://arxiv.org/abs/2504.08245v1
- Date: Fri, 11 Apr 2025 04:06:58 GMT
- Title: Molecular Axis Distribution Moments in Ultrafast Transient Absorption Spectroscopy: A Path Towards Ultrafast Quantum State Tomography
- Authors: Shashank Kumar, Eric Liu, Liang Z. Tan, Varun Makhija, Niranjan Shivaram,
- Abstract summary: In ultrafast experiments with gas phase molecules, the alignment of the molecular axis relative to the polarization of the interacting laser pulses plays a crucial role.<n>We show that our formalism allows us to also evaluate the anisotropic contributions to the spectrum.
- Score: 0.5825410941577593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In ultrafast experiments with gas phase molecules, the alignment of the molecular axis relative to the polarization of the interacting laser pulses plays a crucial role in determining the dynamics following this light-matter interaction. The molecular axis distribution is influenced by the interacting pulses and is intrinsically linked to the electronic coherences of the excited molecules. However, in typical theoretical calculations of such interactions, the signal is either calculated for a single molecule in the molecular frame or averaged over all possible molecular orientations to compare with the experiment. This averaging leads to the loss of information about anisotropy in the molecular-axis distribution, which could significantly affect the measured experimental signal. Here, we calculate the laboratory frame transient electronic first-order polarization ($P^{(1)}$) spectra in terms of separated molecular frame and laboratory frame quantities. The laboratory frame polarizations are compared with orientation-averaged Quantum Master Equation (QME) calculations, demonstrating that orientation-averaging captures only the isotropic contributions. We show that our formalism allows us to also evaluate the anisotropic contributions to the spectrum. Finally, we discuss the application of this approach to achieve ultrafast quantum state tomography using transient absorption spectroscopy and field observables in nonlinear spectroscopy.
Related papers
- Mapping molecular polariton transport via pump-probe microscopy [0.0]
We show how the transport properties of molecular polaritons in optical cavities can be extracted from a microscopic modeling of pump-probe spectroscopy.
Our results highlight the need to consider measured spectroscopic observables when characterizing transport in polaritonic systems.
arXiv Detail & Related papers (2025-04-22T00:46:24Z) - Time resolved quantum tomography in molecular spectroscopy by the Maximal Entropy Approach [1.7563879056963012]
A fundamental question emerges: what role, if any, do quantum coherences between molecular electron states play in photochemical reactions?
The Maximal Entropy (MaxEnt) based Quantum State Tomography (QST) approach offers unique advantages in studying molecular dynamics.
We present two methodologies for constructing these operators: one leveraging Molecular Angular Distribution Moments (MADMs) which accurately capture the orientation-dependent vibronic dynamics of molecules.
We achieve a groundbreaking milestone by constructing, for the first time, the entanglement entropy of the electronic subsystem: a metric that was previously inaccessible.
arXiv Detail & Related papers (2024-07-23T16:43:01Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - Polaritons under Extensive Disordered Molecular Rotation in Optical
Cavities [4.788427041690547]
This study investigates the dynamic behavior of polaritons in an optical cavity containing one million molecules.
The rotational motion of molecules significantly affects the electromagnetic field distribution within the cavity.
The presence of level disorder induces diverse energy level structures, influencing the energy distribution of polaritons.
arXiv Detail & Related papers (2023-12-28T08:31:53Z) - Entangled Photons Enabled Ultrafast Stimulated Raman Spectroscopy for
Molecular Dynamics [0.0]
We propose a new paradigm of stimulated Raman scattering with entangled photons.
A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences.
Our work suggests a new scheme of optical signals and spectroscopy, with potential to unveil advanced information about complex materials.
arXiv Detail & Related papers (2023-05-24T02:57:43Z) - Bipolar single-molecule electroluminescence and electrofluorochromism [50.591267188664666]
We investigate cationic and anionic fluorescence of individual zinc phthalocyanine (ZnPc) molecules adsorbed on ultrathin NaCl films on Ag (111) by using STML.
They depend on the tip-sample bias polarity and appear at threshold voltages that are correlated with the onset energies of particular molecular orbitals.
arXiv Detail & Related papers (2022-10-20T09:22:45Z) - Simulation of absorption spectra of molecular aggregates: a Hierarchy of
Stochastic Pure States approach [68.8204255655161]
hierarchy of pure states (HOPS) provides a formally exact solution based on local, trajectories.
Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories.
arXiv Detail & Related papers (2021-11-01T16:59:54Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Molecular structure retrieval directly from laboratory-frame
photoelectron spectra in laser-induced electron diffraction [0.33256372159758324]
We introduce a simple molecular retrieval method based on the identification of critical points in the oscillating molecular interference scattering signal.
We show that both methods correctly retrieve the asymmetrically stretched and bent field-dressed configuration of the asymmetric top molecule carbonyl sulfide.
arXiv Detail & Related papers (2021-07-01T08:55:14Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.