論文の概要: Localization, Convexity, and Star Aggregation
- arxiv url: http://arxiv.org/abs/2105.08866v1
- Date: Wed, 19 May 2021 00:47:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-20 22:08:07.903860
- Title: Localization, Convexity, and Star Aggregation
- Title(参考訳): 局在、凸性、星の凝集
- Authors: Suhas Vijaykumar
- Abstract要約: オフセットラデマッハ複体は、正方形損失に対する鋭く線形依存的な上界を示すことが示されている。
統計的設定では、オフセット境界は一定の均一な凸性を満たす任意の損失に一般化可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offset Rademacher complexities have been shown to imply sharp, data-dependent
upper bounds for the square loss in a broad class of problems including
improper statistical learning and online learning. We show that in the
statistical setting, the offset complexity upper bound can be generalized to
any loss satisfying a certain uniform convexity condition. Amazingly, this
condition is shown to also capture exponential concavity and self-concordance,
uniting several apparently disparate results. By a unified geometric argument,
these bounds translate directly to improper learning in a non-convex class
using Audibert's "star algorithm." As applications, we recover the optimal
rates for proper and improper learning with the $p$-loss, $1 < p < \infty$,
closing the gap for $p > 2$, and show that improper variants of empirical risk
minimization can attain fast rates for logistic regression and other
generalized linear models.
- Abstract(参考訳): オフセットラデマッハの複雑性は、不適切な統計学習やオンライン学習を含む幅広い種類の問題において、正方形損失に対するデータ依存の上界を鋭く示すことが示されている。
統計的設定では、オフセット複雑性上界は、ある一様凸条件を満たす任意の損失に一般化可能であることを示す。
驚くべきことに、この状態は指数的凹凸と自己一致を捉え、明らかに異なる結果のいくつかをまとめている。
統一的な幾何学的引数により、これらの境界はアウディベルトの「スターアルゴリズム」を用いて非凸クラスにおける不適切な学習に直接変換される。
応用として、$p$-loss, $1 < p < \infty$, ギャップを$p > 2$で閉ざし、経験的リスク最小化の不適切な変種がロジスティック回帰やその他の一般化線形モデルに対して高速な速度が得られることを示す。
関連論文リスト
- Agnostic Smoothed Online Learning [5.167069404528051]
本稿では,$mu$の事前知識を必要とせずに,オンライン学習を円滑に行うためのサブ線形後悔を保証するアルゴリズムを提案する。
R-Coverは、次元$d$を持つ関数クラスに対して、適応的後悔$tilde O(sqrtdT/sigma)$を持つ。
論文 参考訳(メタデータ) (2024-10-07T15:25:21Z) - Byzantine-resilient Federated Learning With Adaptivity to Data Heterogeneity [54.145730036889496]
本稿では、ビザンツの悪意ある攻撃データの存在下でのグラディエント・ラーニング(FL)を扱う。
Average Algorithm (RAGA) が提案され、ロバストネスアグリゲーションを活用してデータセットを選択することができる。
論文 参考訳(メタデータ) (2024-03-20T08:15:08Z) - Adversarial Contextual Bandits Go Kernelized [21.007410990554522]
本研究では、ヒルベルト核空間に属する損失関数を組み込むことにより、逆線形文脈帯域におけるオンライン学習の問題を一般化する。
本稿では,損失関数を推定し,ほぼ最適の後悔の保証を再現するための新しい楽観的偏り推定器を提案する。
論文 参考訳(メタデータ) (2023-10-02T19:59:39Z) - Generalization Analysis for Contrastive Representation Learning [80.89690821916653]
既存の一般化誤差境界は負の例の数$k$に線形に依存する。
対数項まで$k$に依存しないコントラスト学習のための新しい一般化境界を確立する。
論文 参考訳(メタデータ) (2023-02-24T01:03:56Z) - A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized
Linear Models [33.36787620121057]
ガウス空間の任意のクラスの線型予測器を示す新しい一般化境界を証明した。
私たちは、Zhou et al. (2021) の「最適化率」を直接回復するために、有限サンプルバウンドを使用します。
ローカライズされたガウス幅を用いた有界一般化の適用は、一般に経験的リスク最小化に対してシャープであることを示す。
論文 参考訳(メタデータ) (2022-10-21T16:16:55Z) - The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret
and Policy Switches [84.54669549718075]
漸進的強化学習(RL)における後悔の最小化問題について検討する。
一般関数クラスと一般モデルクラスで学ぶことに集中する。
対数的後悔境界は$O(log T)$スイッチングコストのアルゴリズムによって実現可能であることを示す。
論文 参考訳(メタデータ) (2022-03-03T02:55:55Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
本稿では,データから学ぶための凸解析フレームワークを提案する。
三角凸分解はその上部に対応する変換によって保証されることを示す。
論文 参考訳(メタデータ) (2021-09-17T17:46:12Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Sample-efficient L0-L2 constrained structure learning of sparse Ising
models [3.056751497358646]
スパースイジングモデルの基盤となるグラフを$n$ i.i.d.サンプルから$p$ノードで学習する問題を考察する。
濃度制約 L0 ノルムを有効に利用し、このノルムを L2 ノルムと組み合わせて非零係数をモデル化する。
論文 参考訳(メタデータ) (2020-12-03T07:52:20Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - The Implicit Bias of Gradient Descent on Separable Data [44.98410310356165]
予測器は最大マージン(シャープマージンSVM)解の方向へ収束することを示す。
これは、トレーニングエラーがゼロになった後もロジスティックまたはクロスエントロピー損失を最適化し続ける利点を説明するのに役立つ。
論文 参考訳(メタデータ) (2017-10-27T21:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。