Universal Entanglement Transitions of Free Fermions with Long-range
Non-unitary Dynamics
- URL: http://arxiv.org/abs/2105.08895v3
- Date: Thu, 19 May 2022 20:55:03 GMT
- Title: Universal Entanglement Transitions of Free Fermions with Long-range
Non-unitary Dynamics
- Authors: Pengfei Zhang, Chunxiao Liu, Shao-Kai Jian, and Xiao Chen
- Abstract summary: Non-unitary evolution can give rise to novel steady states classified by their entanglement properties.
In this work, we aim to understand its interplay with long-range hopping that decays with $r-alpha$ in free-fermion systems.
- Score: 16.533265279392772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-unitary evolution can give rise to novel steady states classified by
their entanglement properties. In this work, we aim to understand its interplay
with long-range hopping that decays with $r^{-\alpha}$ in free-fermion systems.
We first study two solvable Brownian models with long-range non-unitary
dynamics: a large-$N$ SYK$_2$ chain and a single-flavor fermion chain and we
show that they share the same phase diagram. When $\alpha>0.5$, we observe two
critical phases with subvolume entanglement scaling: (i) $\alpha>1.5$, a
logarithmic phase with dynamical exponent $z=1$ and logarithmic subsystem
entanglement, and (ii) $0.5<\alpha<1.5$, a fractal phase with
$z=\frac{2\alpha-1}{2}$ and subsystem entanglement $S_A\propto L_A^{1-z}$,
where $L_A$ is the length of the subsystem $A$. These two phases cannot be
distinguished by the purification dynamics, in which the entropy always decays
as $L/T$. We then confirm that the results are also valid for the static
SYK$_2$ chain, indicating the phase diagram is universal for general
free-fermion systems. We also discuss phase diagrams in higher dimensions and
the implication in measurement-induced phase transitions.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Scale-invariant phase transition of disordered bosons in one dimension [0.0]
disorder-induced quantum phase transition between superfluid and non-superfluid states of bosonic particles in one dimension is generally expected to be of the Berezinskii-Kosterlitz-Thouless (BKT) type.
Here, we show that hard-core lattice bosons with integrable power-law hopping decaying with distance as $1/ralpha$ undergo a non-BKT continuous phase transition instead.
arXiv Detail & Related papers (2023-10-26T13:30:12Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Entanglement Entropy Growth in Disordered Spin Chains with Tunable Range
Interactions [0.0]
We study the effect of bond randomness in long-range interacting spin chains on the quantum quench dynamics.
For $alphaalpha_c$, we find that the entanglement entropy grows as a power-law with time.
arXiv Detail & Related papers (2023-03-04T13:27:56Z) - Full Counting Statistics across the Entanglement Phase Transition of
Non-Hermitian Hamiltonians with Charge Conservations [4.923287660970805]
We study the full counting statistics (FCS) $Z(phi, O)equiv sum_o eiphi oP(o)$ for 1D systems described by non-Hermitian SYK-like models.
In both the volume-law entangled phase for interacting systems and the critical phase for non-interacting systems, the conformal symmetry emerges, which gives $F(phi, Q_A)equiv log Z(phi, Q_A)sim phi2log |A|$
arXiv Detail & Related papers (2023-02-19T03:51:04Z) - Exact solution for the filling-induced thermalization transition in a 1D
fracton system [0.0]
We study a random circuit model of constrained fracton dynamics in which particles undergo random local motion.
We identify an exact solution for the critical density $n_c$.
We show that there is a universal value of the correlation length exponent $nu = 2$ near the transition.
arXiv Detail & Related papers (2022-10-05T18:00:02Z) - Superdiffusion in random two dimensional system with time-reversal symmetry and long-range hopping [45.873301228345696]
localization problem in the crossover regime for the dimension $d=2$ and hopping $V(r) propto r-2$ is not resolved yet.
We show that for the hopping determined by two-dimensional anisotropic dipole-dipole interactions there exist two distinguishable phases at weak and strong disorder.
arXiv Detail & Related papers (2022-05-29T16:53:20Z) - Fidelity and entanglement entropy for infinite-order phase transitions [4.453923176362749]
We study the fidelity and the entanglement entropy for the ground states of quantum systems that have infinite-order quantum phase transitions.
In particular, we consider the quantum O(2) model with a spin-$S$ truncation, where there is an infinite-order Gaussian (IOG) transition for $S = 1$.
We show that the height of the peak in the fidelity susceptibility ($chi_F$) converges to a finite thermodynamic value as a power law of $1/L$ for the IOG transition and as $1/ln(L)$ for BKT transitions.
arXiv Detail & Related papers (2021-08-23T06:28:50Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.