Physics Validation of Novel Convolutional 2D Architectures for Speeding
Up High Energy Physics Simulations
- URL: http://arxiv.org/abs/2105.08960v1
- Date: Wed, 19 May 2021 07:24:23 GMT
- Title: Physics Validation of Novel Convolutional 2D Architectures for Speeding
Up High Energy Physics Simulations
- Authors: Florian Rehm, Sofia Vallecorsa, Kerstin Borras, Dirk Kr\"ucker
- Abstract summary: We apply Geneversarative Adrial Networks (GANs), a deep learning technique, to replace the calorimeter detector simulations.
We develop new two-dimensional convolutional networks to solve the same 3D image generation problem faster.
Our results demonstrate a high physics accuracy and further consolidate the use of GANs for fast detector simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The precise simulation of particle transport through detectors remains a key
element for the successful interpretation of high energy physics results.
However, Monte Carlo based simulation is extremely demanding in terms of
computing resources. This challenge motivates investigations of faster,
alternative approaches for replacing the standard Monte Carlo approach.
We apply Generative Adversarial Networks (GANs), a deep learning technique,
to replace the calorimeter detector simulations and speeding up the simulation
time by orders of magnitude. We follow a previous approach which used
three-dimensional convolutional neural networks and develop new two-dimensional
convolutional networks to solve the same 3D image generation problem faster.
Additionally, we increased the number of parameters and the neural networks
representational power, obtaining a higher accuracy. We compare our best
convolutional 2D neural network architecture and evaluate it versus the
previous 3D architecture and Geant4 data. Our results demonstrate a high
physics accuracy and further consolidate the use of GANs for fast detector
simulations.
Related papers
- Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems [1.6494451064539348]
We present a hybrid optimization scheme for neural quantum states (NQS) that involves a data-driven pretraining with numerical or experimental data and a second, Hamiltonian-driven optimization stage.
Our work paves the way for a reliable and efficient optimization of neural quantum states.
arXiv Detail & Related papers (2024-05-31T17:55:27Z) - EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
We present a novel machine-learning (ML) approach (EM-GANSim) for real-time electromagnetic (EM) propagation.
In practice, it can compute the signal strength in a few milliseconds on any location in 3D indoor environments.
arXiv Detail & Related papers (2024-05-27T17:19:02Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - Efficient Physics-Based Learned Reconstruction Methods for Real-Time 3D
Near-Field MIMO Radar Imaging [0.0]
Near-field multiple-input multiple-output (MIMO) radar imaging systems have recently gained significant attention.
In this paper, we develop novel non-iterative deep learning-based reconstruction methods for real-time near-field imaging.
The goal is to achieve high image quality with low computational cost at settings.
arXiv Detail & Related papers (2023-12-28T11:05:36Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations.
The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods.
We propose an alternative approach to the problem that leverages machine learning.
arXiv Detail & Related papers (2023-06-23T16:45:46Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Convolution, aggregation and attention based deep neural networks for
accelerating simulations in mechanics [1.0154623955833253]
We demonstrate three types of neural network architectures for efficient learning of deformations of solid bodies.
The first two are based on the recently proposed CNN U-NET and MAgNET frameworks which have shown promising performance for learning on mesh-based data.
The third architecture is Perceiver IO, a very recent architecture that belongs to the family of attention-based neural networks.
arXiv Detail & Related papers (2022-12-01T13:10:56Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.