Learning Controllable Adaptive Simulation for Multi-resolution Physics
- URL: http://arxiv.org/abs/2305.01122v1
- Date: Mon, 1 May 2023 23:20:27 GMT
- Title: Learning Controllable Adaptive Simulation for Multi-resolution Physics
- Authors: Tailin Wu, Takashi Maruyama, Qingqing Zhao, Gordon Wetzstein, Jure
Leskovec
- Abstract summary: We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
- Score: 86.8993558124143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating the time evolution of physical systems is pivotal in many
scientific and engineering problems. An open challenge in simulating such
systems is their multi-resolution dynamics: a small fraction of the system is
extremely dynamic, and requires very fine-grained resolution, while a majority
of the system is changing slowly and can be modeled by coarser spatial scales.
Typical learning-based surrogate models use a uniform spatial scale, which
needs to resolve to the finest required scale and can waste a huge compute to
achieve required accuracy. In this work, we introduce Learning controllable
Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep
learning-based surrogate model that jointly learns the evolution model and
optimizes appropriate spatial resolutions that devote more compute to the
highly dynamic regions. LAMP consists of a Graph Neural Network (GNN) for
learning the forward evolution, and a GNN-based actor-critic for learning the
policy of spatial refinement and coarsening. We introduce learning techniques
that optimizes LAMP with weighted sum of error and computational cost as
objective, allowing LAMP to adapt to varying relative importance of error vs.
computation tradeoff at inference time. We evaluate our method in a 1D
benchmark of nonlinear PDEs and a challenging 2D mesh-based simulation. We
demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate
models, and can adaptively trade-off computation to improve long-term
prediction error: it achieves an average of 33.7% error reduction for 1D
nonlinear PDEs, and outperforms MeshGraphNets + classical Adaptive Mesh
Refinement (AMR) in 2D mesh-based simulations. Project website with data and
code can be found at: http://snap.stanford.edu/lamp.
Related papers
- Metamizer: a versatile neural optimizer for fast and accurate physics simulations [4.717325308876749]
We introduce Metamizer, a novel neural network that iteratively solves a wide range of physical systems with high accuracy.
We demonstrate that Metamizer achieves unprecedented accuracy for deep learning based approaches.
Our results suggest that Metamizer could have a profound impact on future numerical solvers.
arXiv Detail & Related papers (2024-10-10T11:54:31Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
This work explores the potential usage of graph neural networks (GNNs) for the simulation of time-dependent PDEs.
We propose a systematic strategy to build surrogate models based on a data-driven time-stepping scheme.
We show that GNNs can provide a valid alternative to traditional surrogate models in terms of computational efficiency and generalization to new scenarios.
arXiv Detail & Related papers (2023-08-03T08:14:28Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Active Learning for Computationally Efficient Distribution of Binary
Evolution Simulations [0.19359975080269876]
We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run.
We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids.
arXiv Detail & Related papers (2022-03-30T21:36:32Z) - Generic Lithography Modeling with Dual-band Optics-Inspired Neural
Networks [52.200624127512874]
We introduce a dual-band optics-inspired neural network design that considers the optical physics underlying lithography.
Our approach yields the first published via/metal layer contour simulation at 1nm2/pixel resolution with any tile size.
We also achieve 85X simulation speedup over traditional lithography simulator with 1% accuracy loss.
arXiv Detail & Related papers (2022-03-12T08:08:50Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
We present a task for navigating a marble to the center of a circular maze.
We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system.
arXiv Detail & Related papers (2020-11-14T02:03:08Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
We introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks.
Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth.
arXiv Detail & Related papers (2020-10-07T13:34:49Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.