Prototype Guided Federated Learning of Visual Feature Representations
- URL: http://arxiv.org/abs/2105.08982v1
- Date: Wed, 19 May 2021 08:29:12 GMT
- Title: Prototype Guided Federated Learning of Visual Feature Representations
- Authors: Umberto Michieli and Mete Ozay
- Abstract summary: Federated Learning (FL) is a framework which enables distributed model training using a large corpus of decentralized training data.
Existing methods aggregate models disregarding their internal representations, which are crucial for training models in vision tasks.
We introduce FedProto, which computes client deviations using margins of representations learned on distributed data.
- Score: 15.021124010665194
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) is a framework which enables distributed model
training using a large corpus of decentralized training data. Existing methods
aggregate models disregarding their internal representations, which are crucial
for training models in vision tasks. System and statistical heterogeneity
(e.g., highly imbalanced and non-i.i.d. data) further harm model training. To
this end, we introduce a method, called FedProto, which computes client
deviations using margins of prototypical representations learned on distributed
data, and applies them to drive federated optimization via an attention
mechanism. In addition, we propose three methods to analyse statistical
properties of feature representations learned in FL, in order to elucidate the
relationship between accuracy, margins and feature discrepancy of FL models. In
experimental analyses, FedProto demonstrates state-of-the-art accuracy and
convergence rate across image classification and semantic segmentation
benchmarks by enabling maximum margin training of FL models. Moreover, FedProto
reduces uncertainty of predictions of FL models compared to the baseline. To
our knowledge, this is the first work evaluating FL models in dense prediction
tasks, such as semantic segmentation.
Related papers
- On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models [0.9940108090221528]
Aggregation strategies have been developed to pool or fuse the weights and biases of distributed deterministic models.
We show that simple application of the aggregation methods associated with FL schemes for deterministic models is either impossible or results in sub-optimal performance.
arXiv Detail & Related papers (2024-03-22T15:02:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Straggler-resilient Federated Learning: Tackling Computation
Heterogeneity with Layer-wise Partial Model Training in Mobile Edge Network [4.1813760301635705]
We propose Federated Partial Model Training (FedPMT), where devices with smaller computational capabilities work on partial models and contribute to the global model.
As such, all devices in FedPMT prioritize the most crucial parts of the global model.
Empirical results show that FedPMT significantly outperforms the existing benchmark FedDrop.
arXiv Detail & Related papers (2023-11-16T16:30:04Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Importance of Smoothness Induced by Optimizers in FL4ASR: Towards
Understanding Federated Learning for End-to-End ASR [12.108696564200052]
We start by training End-to-End Automatic Speech Recognition (ASR) models using Federated Learning (FL)
We examine the fundamental considerations that can be pivotal in minimizing the performance gap in terms of word error rate between models trained using FL versus their centralized counterpart.
arXiv Detail & Related papers (2023-09-22T17:23:01Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Federated Unlearning [24.60965999954735]
Federated learning (FL) has emerged as a promising distributed machine learning (ML) paradigm.
Practical needs of the "right to be forgotten" and countering data poisoning attacks call for efficient techniques that can remove, or unlearn, specific training data from the trained FL model.
We present FedEraser, the first federated unlearning methodology that can eliminate the influence of a federated client's data on the global FL model.
arXiv Detail & Related papers (2020-12-27T08:54:37Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.