Over-the-Air Federated Learning and Optimization
- URL: http://arxiv.org/abs/2310.10089v1
- Date: Mon, 16 Oct 2023 05:49:28 GMT
- Title: Over-the-Air Federated Learning and Optimization
- Authors: Jingyang Zhu, Yuanming Shi, Yong Zhou, Chunxiao Jiang, Wei Chen,
Khaled B. Letaief
- Abstract summary: We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
- Score: 52.5188988624998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL), as an emerging distributed machine learning
paradigm, allows a mass of edge devices to collaboratively train a global model
while preserving privacy. In this tutorial, we focus on FL via over-the-air
computation (AirComp), which is proposed to reduce the communication overhead
for FL over wireless networks at the cost of compromising in the learning
performance due to model aggregation error arising from channel fading and
noise. We first provide a comprehensive study on the convergence of
AirComp-based FedAvg (AirFedAvg) algorithms under both strongly convex and
non-convex settings with constant and diminishing learning rates in the
presence of data heterogeneity. Through convergence and asymptotic analysis, we
characterize the impact of aggregation error on the convergence bound and
provide insights for system design with convergence guarantees. Then we derive
convergence rates for AirFedAvg algorithms for strongly convex and non-convex
objectives. For different types of local updates that can be transmitted by
edge devices (i.e., local model, gradient, and model difference), we reveal
that transmitting local model in AirFedAvg may cause divergence in the training
procedure. In addition, we consider more practical signal processing schemes to
improve the communication efficiency and further extend the convergence
analysis to different forms of model aggregation error caused by these signal
processing schemes. Extensive simulation results under different settings of
objective functions, transmitted local information, and communication schemes
verify the theoretical conclusions.
Related papers
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Channel and Gradient-Importance Aware Device Scheduling for Over-the-Air
Federated Learning [31.966999085992505]
Federated learning (FL) is a privacy-preserving distributed training scheme.
We propose a device scheduling framework for over-the-air FL, named PO-FL, to mitigate the negative impact of channel noise distortion.
arXiv Detail & Related papers (2023-05-26T12:04:59Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - FedCAT: Towards Accurate Federated Learning via Device Concatenation [4.416919766772866]
Federated Learning (FL) enables all the involved devices to train a global model collaboratively without exposing their local data privacy.
For non-IID scenarios, the classification accuracy of FL models decreases drastically due to the weight divergence caused by data heterogeneity.
We introduce a novel FL approach named Fed-Cat that can achieve high model accuracy based on our proposed device selection strategy and device concatenation-based local training method.
arXiv Detail & Related papers (2022-02-23T10:08:43Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
We develop a unified communication-learning optimization problem to jointly optimize device selection, over-the-air transceiver design, and RIS configuration.
Numerical experiments show that the proposed design achieves substantial learning accuracy improvement compared with the state-of-the-art approaches.
arXiv Detail & Related papers (2020-11-20T08:54:13Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.