論文の概要: Unsupervised learning of text line segmentation by differentiating
coarse patterns
- arxiv url: http://arxiv.org/abs/2105.09405v2
- Date: Fri, 21 May 2021 00:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-29 20:17:33.692369
- Title: Unsupervised learning of text line segmentation by differentiating
coarse patterns
- Title(参考訳): 粗いパターンの識別によるテキスト行分割の教師なし学習
- Authors: Berat Kurar Barakat, Ahmad Droby, Raid Saabni, and Jihad El-Sana
- Abstract要約: 距離が粗いテキスト行パターンに類似するコンパクトユークリッド空間に文書イメージパッチを埋め込む教師なしのディープラーニング手法を提案する。
テキスト行のセグメンテーションは、埋め込み特徴ベクトルを使って標準技術を使って容易に実装できる。
本手法は,テキスト行分割データセットのいくつかの変種に対して定性的かつ定量的に評価し,その効果を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in the field of supervised deep learning for text
line segmentation, unsupervised deep learning solutions are beginning to gain
popularity. In this paper, we present an unsupervised deep learning method that
embeds document image patches to a compact Euclidean space where distances
correspond to a coarse text line pattern similarity. Once this space has been
produced, text line segmentation can be easily implemented using standard
techniques with the embedded feature vectors. To train the model, we extract
random pairs of document image patches with the assumption that neighbour
patches contain a similar coarse trend of text lines, whereas if one of them is
rotated, they contain different coarse trends of text lines. Doing well on this
task requires the model to learn to recognize the text lines and their salient
parts. The benefit of our approach is zero manual labelling effort. We evaluate
the method qualitatively and quantitatively on several variants of text line
segmentation datasets to demonstrate its effectivity.
- Abstract(参考訳): 近年,テキスト行セグメンテーションにおける教師なし深層学習の分野が進歩しているにもかかわらず,教師なし深層学習ソリューションが人気を集め始めている。
本稿では,距離が粗いテキスト行パターンの類似性に対応するコンパクトなユークリッド空間に,文書イメージパッチを埋め込む教師なしのディープラーニング手法を提案する。
この空間が生成されると、テキスト行のセグメンテーションは埋め込み特徴ベクトルを使って標準技術で容易に実装できる。
モデルのトレーニングには,テキスト行の粗い傾向を隣接パッチが含んでいると仮定したランダムな文書画像パッチを抽出するが,一方が回転している場合には,テキスト行の粗い傾向が異なる。
このタスクをうまくこなすには、モデルがテキスト行とその突出部を認識することを学ぶ必要がある。
このアプローチの利点は、手動ラベリングの労力をゼロにすることです。
本手法は,テキストラインセグメンテーションデータセットのいくつかの変種について定性的かつ定量的に評価し,その効果を示す。
関連論文リスト
- Segmenting Messy Text: Detecting Boundaries in Text Derived from
Historical Newspaper Images [0.0]
新聞の結婚発表リストを1つの発表単位に分けるという,困難なテキストセグメンテーションの課題について考察する。
多くの場合、情報は文に構造化されず、隣接するセグメントは互いに位相的に区別されない。
本稿では,このようなテキストをセグメント化するための新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2023-12-20T05:17:06Z) - Copy Is All You Need [66.00852205068327]
既存のテキストコレクションからテキストセグメントを段階的にコピーするテキスト生成を定式化する。
提案手法は, 自動評価と人的評価の両方により, より優れた生成品質を実現する。
当社のアプローチでは,より大規模なテキストコレクションにスケールアップすることで,さらなるパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2023-07-13T05:03:26Z) - LRANet: Towards Accurate and Efficient Scene Text Detection with
Low-Rank Approximation Network [63.554061288184165]
低ランク近似に基づく新しいパラメータ化テキスト形状法を提案する。
異なるテキストの輪郭間の形状相関を探索することにより, 形状表現における一貫性, コンパクト性, 単純性, 頑健性を実現する。
我々はLRANetという名前の正確で効率的な任意の形状のテキスト検出器を実装した。
論文 参考訳(メタデータ) (2023-06-27T02:03:46Z) - SpaText: Spatio-Textual Representation for Controllable Image Generation [61.89548017729586]
SpaTextはオープン語彙シーン制御を用いたテキスト・ツー・イメージ生成の新しい手法である。
シーン全体を記述したグローバルテキストプロンプトに加えて、ユーザはセグメンテーションマップを提供する。
現状拡散モデルである画素ベースと潜在条件ベースでの有効性を示す。
論文 参考訳(メタデータ) (2022-11-25T18:59:10Z) - SOLD2: Self-supervised Occlusion-aware Line Description and Detection [95.8719432775724]
単一深層ネットワークにおける回線セグメントの最初の共同検出と記述について紹介します。
我々の手法は注釈付き行ラベルを必要としないため、任意のデータセットに一般化することができる。
複数のマルチビューデータセットにおいて,従来の行検出と記述方法に対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-04-07T19:27:17Z) - Unsupervised Deep Learning for Handwritten Page Segmentation [0.0]
ページ分割のための教師なし深層学習法を提案する。
サイアムスニューラルネットワークは、測定可能な特性を使用してパッチを区別するように訓練される。
実験の結果,提案手法は通常の教師なし手法と同じくらい有効であることがわかった。
論文 参考訳(メタデータ) (2021-01-19T07:13:38Z) - Scene Text Detection with Scribble Lines [59.698806258671105]
テキスト検出のための多角形の代わりにスクリブル線でテキストをアノテートすることを提案する。
さまざまな形状のテキストの一般的なラベリング方法であり、ラベリングコストが低くなります。
実験の結果,提案手法は弱ラベル法と元のポリゴン系ラベリング法との間の性能ギャップを橋渡しすることを示した。
論文 参考訳(メタデータ) (2020-12-09T13:14:53Z) - OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page
Text Recognition by learning to unfold [6.09170287691728]
セグメンテーションフリーのシングルライン認識からセグメンテーションフリーのマルチライン/フルページ認識へ進む。
我々は、CTCで訓練された完全畳み込み単行文字認識装置を拡張可能な、新しいシンプルなニューラルネットワークモジュール、textbfOrigamiNetを提案する。
IAM と ICDAR 2017 の HTR ベンチマークでは,手書き文字認識の精度が他のすべての手法を上回り,最先端の文字誤り率を実現している。
論文 参考訳(メタデータ) (2020-06-12T22:18:02Z) - Unsupervised deep learning for text line segmentation [0.0]
一般的な方法は、テキスト行をトレースするブロブラインの画像に文書イメージを埋め込むためのディープラーニングネットワークを訓練することである。
本稿では、アノテーションを必要とせずに、文書イメージパッチの教師なし埋め込みを提案する。
本研究では,アウトレーヤが収束を損なわないことを示すとともに,テキスト行間の空間からテキスト行を識別するネットワークを学習する。
論文 参考訳(メタデータ) (2020-03-19T08:57:53Z) - TextScanner: Reading Characters in Order for Robust Scene Text
Recognition [60.04267660533966]
TextScannerはシーンテキスト認識の代替手法である。
文字クラス、位置、順序に対する画素単位のマルチチャネルセグメンテーションマップを生成する。
また、コンテキストモデリングにRNNを採用し、文字の位置とクラスを並列で予測する。
論文 参考訳(メタデータ) (2019-12-28T07:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。