An IoT-Based Framework for Remote Fall Monitoring
- URL: http://arxiv.org/abs/2105.09461v1
- Date: Wed, 10 Mar 2021 22:37:19 GMT
- Title: An IoT-Based Framework for Remote Fall Monitoring
- Authors: Ayman Al-Kababji, Abbes Amira, Faycal Bensaali, Abdulah Jarouf, Lisan
Shidqi, Hamza Djelouat
- Abstract summary: This paper presents a novel IoT-based system for fall detection that includes a sensing device transmitting data to a mobile application through a cloud-connected gateway device.
The results emphasize on the significance of Continuous Wavelet Transform (CWT) as an influential feature for determining falls.
For all performance metrics (accuracy, recall, precision, specificity, and F1 Score), the achieved results are higher than 95% for a dataset of small size.
- Score: 2.511917198008258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fall detection is a serious healthcare issue that needs to be solved. Falling
without quick medical intervention would lower the chances of survival for the
elderly, especially if living alone. Hence, the need is there for developing
fall detection algorithms with high accuracy. This paper presents a novel
IoT-based system for fall detection that includes a sensing device transmitting
data to a mobile application through a cloud-connected gateway device. Then,
the focus is shifted to the algorithmic aspect where multiple features are
extracted from 3-axis accelerometer data taken from existing datasets. The
results emphasize on the significance of Continuous Wavelet Transform (CWT) as
an influential feature for determining falls. CWT, Signal Energy (SE), Signal
Magnitude Area (SMA), and Signal Vector Magnitude (SVM) features have shown
promising classification results using K-Nearest Neighbors (KNN) and E-Nearest
Neighbors (ENN). For all performance metrics (accuracy, recall, precision,
specificity, and F1 Score), the achieved results are higher than 95% for a
dataset of small size, while more than 98.47% score is achieved in the
aforementioned criteria over the UniMiB-SHAR dataset by the same algorithms,
where the classification time for a single test record is extremely efficient
and is real-time
Related papers
- BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
We propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD)
The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders.
In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters.
arXiv Detail & Related papers (2023-01-30T16:21:18Z) - DEGAN: Time Series Anomaly Detection using Generative Adversarial
Network Discriminators and Density Estimation [0.0]
We have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN.
It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor.
arXiv Detail & Related papers (2022-10-05T04:32:12Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
Classification between different activities in an indoor environment using wireless signals is an emerging technology for various applications.
In this paper, we analyze classification of moving objects by employing machine learning on real data from a massive multi-input-multi-output (MIMO) system in an indoor environment.
arXiv Detail & Related papers (2021-02-09T15:48:35Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
We propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges.
We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states.
Experiments show that MIDAS-F has significantly higher accuracy than MIDAS.
arXiv Detail & Related papers (2020-09-17T17:59:27Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
This paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT.
We first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability.
Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies.
Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textitk selection to
arXiv Detail & Related papers (2020-07-19T16:47:26Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.