Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach
- URL: http://arxiv.org/abs/2007.09712v1
- Date: Sun, 19 Jul 2020 16:47:26 GMT
- Title: Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach
- Authors: Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen
Kang, M. Shamim Hossain
- Abstract summary: This paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT.
We first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability.
Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies.
Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textitk selection to
- Score: 40.992167455141946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since edge device failures (i.e., anomalies) seriously affect the production
of industrial products in Industrial IoT (IIoT), accurately and timely
detecting anomalies is becoming increasingly important. Furthermore, data
collected by the edge device may contain the user's private data, which is
challenging the current detection approaches as user privacy is calling for the
public concern in recent years. With this focus, this paper proposes a new
communication-efficient on-device federated learning (FL)-based deep anomaly
detection framework for sensing time-series data in IIoT. Specifically, we
first introduce a FL framework to enable decentralized edge devices to
collaboratively train an anomaly detection model, which can improve its
generalization ability. Second, we propose an Attention Mechanism-based
Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to
accurately detect anomalies. The AMCNN-LSTM model uses attention
mechanism-based CNN units to capture important fine-grained features, thereby
preventing memory loss and gradient dispersion problems. Furthermore, this
model retains the advantages of LSTM unit in predicting time series data.
Third, to adapt the proposed framework to the timeliness of industrial anomaly
detection, we propose a gradient compression mechanism based on Top-\textit{k}
selection to improve communication efficiency. Extensive experiment studies on
four real-world datasets demonstrate that the proposed framework can accurately
and timely detect anomalies and also reduce the communication overhead by 50\%
compared to the federated learning framework that does not use a gradient
compression scheme.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
Anomalies refer to data points or events that deviate from normal and homogeneous events.
This study presents a novel framework for time series anomaly detection using a combination of Bi-LSTM architecture and Autoencoder.
The Bi-LSTM Autoencoder model achieved a classification accuracy of 96.79% and outperformed more commonly used LSTM Autoencoder models.
arXiv Detail & Related papers (2023-03-17T00:24:28Z) - TinyAD: Memory-efficient anomaly detection for time series data in
Industrial IoT [43.207210990362825]
We propose a novel framework named Tiny Anomaly Detection (TinyAD) to efficiently facilitate onboard inference of CNNs for real-time anomaly detection.
To reduce the peak memory consumption of CNNs, we explore two complementary strategies, in-place, and patch-by-patch memory rescheduling.
Our framework can reduce peak memory consumption by 2-5x with negligible overhead.
arXiv Detail & Related papers (2023-03-07T02:56:15Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
We study a sensor's transmit power minimization subject to the peak-AoI requirement and a probabilistic constraint on queuing latency.
We propose a local-model selection approach which accounts for correlation among the sensor's training data.
Numerical results show the tradeoff between the transmit power, peak AoI, and delay's tail distribution.
arXiv Detail & Related papers (2021-08-17T08:38:31Z) - An Efficient One-Class SVM for Anomaly Detection in the Internet of
Things [25.78558553080511]
Insecure Internet of things (IoT) devices pose significant threats to critical infrastructure and the Internet at large.
detecting anomalous behavior from these devices remains of critical importance.
One-Class Support Vector Machines (OCSVM) are one of the state-of-the-art approaches for novelty detection.
arXiv Detail & Related papers (2021-04-22T15:59:56Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.