Newsalyze: Enabling News Consumers to Understand Media Bias
- URL: http://arxiv.org/abs/2105.09672v1
- Date: Thu, 20 May 2021 11:20:37 GMT
- Title: Newsalyze: Enabling News Consumers to Understand Media Bias
- Authors: Felix Hamborg and Anastasia Zhukova and Karsten Donnay and Bela Gipp
- Abstract summary: Knowing a news article's slant and authenticity is of crucial importance in times of "fake news"
We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL)
WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists"
- Score: 7.652448987187803
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: News is a central source of information for individuals to inform themselves
on current topics. Knowing a news article's slant and authenticity is of
crucial importance in times of "fake news," news bots, and centralization of
media ownership. We introduce Newsalyze, a bias-aware news reader focusing on a
subtle, yet powerful form of media bias, named bias by word choice and labeling
(WCL). WCL bias can alter the assessment of entities reported in the news,
e.g., "freedom fighters" vs. "terrorists." At the core of the analysis is a
neural model that uses a news-adapted BERT language model to determine
target-dependent sentiment, a high-level effect of WCL bias. While the analysis
currently focuses on only this form of bias, the visualizations already reveal
patterns of bias when contrasting articles (overview) and in-text instances of
bias (article view).
Related papers
- Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions [0.7249731529275342]
We propose an extension to a recently presented news media reliability estimation method.
We assess the classification performance of four reinforcement learning strategies on a large news media hyperlink graph.
Our experiments, targeting two challenging bias descriptors, factual reporting and political bias, showed a significant performance improvement at the source media level.
arXiv Detail & Related papers (2024-10-23T08:18:26Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Computational Assessment of Hyperpartisanship in News Titles [55.92100606666497]
We first adopt a human-guided machine learning framework to develop a new dataset for hyperpartisan news title detection.
Overall the Right media tends to use proportionally more hyperpartisan titles.
We identify three major topics including foreign issues, political systems, and societal issues that are suggestive of hyperpartisanship in news titles.
arXiv Detail & Related papers (2023-01-16T05:56:58Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
We present a system for bias identification, which combines state-of-the-art methods from natural language understanding.
Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers.
Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption.
arXiv Detail & Related papers (2021-10-18T10:23:19Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
We create three manually annotated datasets and test varying visualization strategies.
Results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group.
Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.
arXiv Detail & Related papers (2021-05-20T10:16:54Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically.
We utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment.
arXiv Detail & Related papers (2020-10-20T22:25:00Z) - Viable Threat on News Reading: Generating Biased News Using Natural
Language Models [49.90665530780664]
We show that publicly available language models can reliably generate biased news content based on an input original news.
We also show that a large number of high-quality biased news articles can be generated using controllable text generation.
arXiv Detail & Related papers (2020-10-05T16:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.