Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles
- URL: http://arxiv.org/abs/2110.09158v1
- Date: Mon, 18 Oct 2021 10:23:19 GMT
- Title: Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles
- Authors: Felix Hamborg and Kim Heinser and Anastasia Zhukova and Karsten Donnay
and Bela Gipp
- Abstract summary: We present a system for bias identification, which combines state-of-the-art methods from natural language understanding.
Second, we devise bias-sensitive visualizations to communicate bias in news articles to non-expert news consumers.
Third, our main contribution is a large-scale user study that measures bias-awareness in a setting that approximates daily news consumption.
- Score: 8.586057042714698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Media bias and its extreme form, fake news, can decisively affect public
opinion. Especially when reporting on policy issues, slanted news coverage may
strongly influence societal decisions, e.g., in democratic elections. Our paper
makes three contributions to address this issue. First, we present a system for
bias identification, which combines state-of-the-art methods from natural
language understanding. Second, we devise bias-sensitive visualizations to
communicate bias in news articles to non-expert news consumers. Third, our main
contribution is a large-scale user study that measures bias-awareness in a
setting that approximates daily news consumption, e.g., we present respondents
with a news overview and individual articles. We not only measure the
visualizations' effect on respondents' bias-awareness, but we can also pinpoint
the effects on individual components of the visualizations by employing a
conjoint design. Our bias-sensitive overviews strongly and significantly
increase bias-awareness in respondents. Our study further suggests that our
content-driven identification method detects groups of similarly slanted news
articles due to substantial biases present in individual news articles. In
contrast, the reviewed prior work rather only facilitates the visibility of
biases, e.g., by distinguishing left- and right-wing outlets.
Related papers
- Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
We present an in-progress system for news recommendation that is the first to automate the manual procedure of content analysis.
Our recommender detects and reveals substantial frames that are actually present in individual news articles.
Our study shows that recommending news articles that differently frame an event significantly improves respondents' awareness of bias.
arXiv Detail & Related papers (2021-10-18T10:13:23Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Newsalyze: Enabling News Consumers to Understand Media Bias [7.652448987187803]
Knowing a news article's slant and authenticity is of crucial importance in times of "fake news"
We introduce Newsalyze, a bias-aware news reader focusing on a subtle, yet powerful form of media bias, named bias by word choice and labeling (WCL)
WCL bias can alter the assessment of entities reported in the news, e.g., "freedom fighters" vs. "terrorists"
arXiv Detail & Related papers (2021-05-20T11:20:37Z) - Enabling News Consumers to View and Understand Biased News Coverage: A
Study on the Perception and Visualization of Media Bias [7.092487352312782]
We create three manually annotated datasets and test varying visualization strategies.
Results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group.
Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.
arXiv Detail & Related papers (2021-05-20T10:16:54Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically.
We utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment.
arXiv Detail & Related papers (2020-10-20T22:25:00Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.