Multiple Support Recovery Using Very Few Measurements Per Sample
- URL: http://arxiv.org/abs/2105.09855v1
- Date: Thu, 20 May 2021 16:02:27 GMT
- Title: Multiple Support Recovery Using Very Few Measurements Per Sample
- Authors: Lekshmi Ramesh, Chandra R. Murthy, Himanshu Tyagi
- Abstract summary: We are given access to linear measurements of multiple sparse samples in $mathbbRd$.
These samples can be partitioned into $ell$ groups, with samples having the same support belonging to the same group.
For a given budget of $m$ measurements per sample, the goal is to recover the $ell$ underlying supports.
- Score: 33.20967869233738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the problem of multiple support recovery, we are given access to linear
measurements of multiple sparse samples in $\mathbb{R}^{d}$. These samples can
be partitioned into $\ell$ groups, with samples having the same support
belonging to the same group. For a given budget of $m$ measurements per sample,
the goal is to recover the $\ell$ underlying supports, in the absence of the
knowledge of group labels. We study this problem with a focus on the
measurement-constrained regime where $m$ is smaller than the support size $k$
of each sample. We design a two-step procedure that estimates the union of the
underlying supports first, and then uses a spectral algorithm to estimate the
individual supports. Our proposed estimator can recover the supports with $m<k$
measurements per sample, from $\tilde{O}(k^{4}\ell^{4}/m^{4})$ samples. Our
guarantees hold for a general, generative model assumption on the samples and
measurement matrices. We also provide results from experiments conducted on
synthetic data and on the MNIST dataset.
Related papers
- GROS: A General Robust Aggregation Strategy [49.1574468325115]
A new, very general, robust procedure for combining estimators in metric spaces is introduced.
We show that the same (up to a constant) sub-Gaussianity is obtained if the minimization is taken over the sample.
The performance of GROS is evaluated through five simulation studies.
arXiv Detail & Related papers (2024-02-23T17:00:32Z) - Testing with Non-identically Distributed Samples [20.74768558932617]
We examine the extent to which sublinear-sample property testing and estimation applies to settings where samples are independently but not identically distributed.
Even with $Theta(k/varepsilon2)$ samples from each distribution, $textbfp_mathrmavg$ is sufficient to learn $textbfp_mathrmavg$ to within error $varepsilon$ in TV distance.
arXiv Detail & Related papers (2023-11-19T01:25:50Z) - Improved Active Learning via Dependent Leverage Score Sampling [8.400581768343804]
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting.
We propose an easily implemented method based on the emphpivotal sampling algorithm
In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to $50%$.
arXiv Detail & Related papers (2023-10-08T01:51:30Z) - Weighted Sparse Partial Least Squares for Joint Sample and Feature
Selection [7.219077740523681]
We propose an $ell_infty/ell_0$-norm constrained weighted sparse PLS ($ell_infty/ell_$-wsPLS) method for joint sample and feature selection.
We develop an efficient iterative algorithm for each multi-view wsPLS model and show its convergence property.
arXiv Detail & Related papers (2023-08-13T10:09:25Z) - Stochastic Approximation Approaches to Group Distributionally Robust
Optimization [96.26317627118912]
Group distributionally robust optimization (GDRO)
Online learning techniques to reduce the number of samples required in each round from $m$ to $1$, keeping the same sample.
A novel formulation of weighted GDRO, which allows us to derive distribution-dependent convergence rates.
arXiv Detail & Related papers (2023-02-18T09:24:15Z) - Bias Mimicking: A Simple Sampling Approach for Bias Mitigation [57.17709477668213]
We introduce a new class-conditioned sampling method: Bias Mimicking.
Bias Mimicking improves underrepresented groups' accuracy of sampling methods by 3% over four benchmarks.
arXiv Detail & Related papers (2022-09-30T17:33:00Z) - Meta Sparse Principal Component Analysis [31.403997435274604]
We study the meta-learning for support (i.e. the set of non-zero entries) recovery in high-dimensional Principal Component Analysis.
We reduce the sufficient sample complexity in a novel task with the information that is learned from auxiliary tasks.
arXiv Detail & Related papers (2022-08-18T16:28:31Z) - A Provably Efficient Sample Collection Strategy for Reinforcement
Learning [123.69175280309226]
One of the challenges in online reinforcement learning (RL) is that the agent needs to trade off the exploration of the environment and the exploitation of the samples to optimize its behavior.
We propose to tackle the exploration-exploitation problem following a decoupled approach composed of: 1) An "objective-specific" algorithm that prescribes how many samples to collect at which states, as if it has access to a generative model (i.e., sparse simulator of the environment); 2) An "objective-agnostic" sample collection responsible for generating the prescribed samples as fast as possible.
arXiv Detail & Related papers (2020-07-13T15:17:35Z) - Meta Learning for Support Recovery in High-dimensional Precision Matrix
Estimation [31.41834200409171]
We study meta learning for support (i.e., the set of non-zero entries) recovery in high-dimensional precision matrix estimation.
In our setup, each task has a different random true precision matrix, each with a possibly different support.
We prove a matching information-theoretic lower bound for the necessary number of samples, which is $n in Omega(log N)/K)$, and thus, our algorithm is minimax optimal.
arXiv Detail & Related papers (2020-06-22T20:24:52Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.