Pixel super-resolution using spatially-entangled photon pairs
- URL: http://arxiv.org/abs/2105.10351v2
- Date: Sun, 12 Jun 2022 13:19:52 GMT
- Title: Pixel super-resolution using spatially-entangled photon pairs
- Authors: Hugo Defienne, Patrick Cameron, Bienvenu Ndagano, Ashley Lyons,
Matthew Reichert, Jiuxuan Zhao, Andrew R. Harvey, Edoardo Charbon, Jason W.
Fleischer, Daniele Faccio
- Abstract summary: We introduce a pixel super-resolution technique based on measuring the full spatially-resolved joint probability distribution of photons.
We demonstrate its use in various quantum imaging protocols using photon pairs, including quantum illumination, entanglement-enabled quantum holography, and in a full-field version of N00N-state quantum holography.
- Score: 2.4026706705044183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pixelation occurs in many imaging systems and limits the spatial resolution
of the acquired images. This effect is notably present in quantum imaging
experiments with correlated photons in which the number of pixels used to
detect coincidences is often limited by the sensor technology or the
acquisition speed. Here, we introduce a pixel super-resolution technique based
on measuring the full spatially-resolved joint probability distribution (JPD)
of spatially-entangled photons. Without shifting optical elements or using
prior information, our technique increases the pixel resolution of the imaging
system by a factor two and enables retrieval of spatial information lost due to
undersampling. We demonstrate its use in various quantum imaging protocols
using photon pairs, including quantum illumination, entanglement-enabled
quantum holography, and in a full-field version of N00N-state quantum
holography. The JPD pixel super-resolution technique can benefit any full-field
imaging system limited by the sensor spatial resolution, including all already
established and future photon-correlation-based quantum imaging schemes,
bringing these techniques closer to real-world applications.
Related papers
- SSIF: Learning Continuous Image Representation for Spatial-Spectral
Super-Resolution [73.46167948298041]
We propose a neural implicit model that represents an image as a function of both continuous pixel coordinates in the spatial domain and continuous wavelengths in the spectral domain.
We show that SSIF generalizes well to both unseen spatial resolutions and spectral resolutions.
It can generate high-resolution images that improve the performance of downstream tasks by 1.7%-7%.
arXiv Detail & Related papers (2023-09-30T15:23:30Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Smart Quantum Statistical Imaging beyond the Abbe-Rayleigh Criterion [0.0]
We introduce a smart quantum camera for superresolving imaging.
This camera exploits the self-learning features of artificial intelligence to identify the statistical fluctuations of unknown mixtures of light sources.
Our work provides a new perspective in the field of imaging with important implications for microscopy, remote sensing, and astronomy.
arXiv Detail & Related papers (2021-10-11T17:33:51Z) - En route to nanoscopic quantum optical imaging: counting emitters with
photon-number-resolving detectors [8.54443177764705]
Fundamental understanding of biological pathways requires minimally invasive nanoscopic optical resolution imaging.
Many approaches to high-resolution imaging rely on localization of single emitters, such as fluorescent molecule or quantum dot.
We show that quantum measurements of the number of photons emitted from an ensemble of emitters enable the determination of the number of emitters and the probability of emission.
arXiv Detail & Related papers (2021-10-08T04:52:42Z) - Interaction-free imaging of multi-pixel objects [58.720142291102135]
Quantum imaging is well-suited to study sensitive samples which require low-light conditions, like biological tissues.
In this context, interaction-free measurements (IFM) allow us infer the presence of an opaque object without the photon interacting with the sample.
Here we extend the IFM imaging schemes to multi-pixel, semi-transparent objects, by encoding the information about the pixels into an internal degree of freedom.
arXiv Detail & Related papers (2021-06-08T06:49:19Z) - Quantum illumination imaging with a single-photon avalanche diode camera [1.8619748472447963]
Single-photon-avalanche diode (SPAD) arrays are essential tools in biophotonics, optical ranging and sensing and quantum optics.
Here, we demonstrate full-field entangled photon pair correlation imaging using a 100-kpixels SPAD camera.
arXiv Detail & Related papers (2020-07-31T12:53:43Z) - A Super-resolution Optical Classifier with High Photon Efficiency [10.249708345143343]
We propose and demonstrate a photon-efficient optical classifier to overcome the Rayleigh limit in spatial resolution.
Super-resolving and photon efficient, this technique can find applications in microscopy, light detection and ranging (LiDAR), and astrophysics.
arXiv Detail & Related papers (2020-06-30T12:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.