論文の概要: Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction
- arxiv url: http://arxiv.org/abs/2105.10478v1
- Date: Fri, 21 May 2021 17:43:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:10:07.229680
- Title: Spatial-Temporal Conv-sequence Learning with Accident Encoding for
Traffic Flow Prediction
- Title(参考訳): 交通流予測のための事故エンコーディングを用いた時空間凸系列学習
- Authors: Zichuan Liu, Rui Zhang, Chen Wang, Hongbo Jiang
- Abstract要約: インテリジェント交通システムにおいて、交通予測の重要な問題は、周期的時間的依存関係と複雑な空間的相関を抽出する方法である。
本研究では、集中時間ブロックが一方向の畳み込みを用いて、短時間の時間的依存を効果的に捉えた時空間連続学習(STCL)を提案する。
本研究では,大規模実世界のタスクについて広範な実験を行い,提案手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 17.94199362114272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In intelligent transportation system, the key problem of traffic forecasting
is how to extract the periodic temporal dependencies and complex spatial
correlation. Current state-of-the-art methods for traffic flow prediction are
based on graph architectures and sequence learning models, but they do not
fully exploit spatial-temporal dynamic information in traffic system.
Specifically, the temporal dependence of short-range is diluted by recurrent
neural networks, and existing sequence model ignores local spatial information
because the convolution operation uses global average pooling. Besides, there
will be some traffic accidents during the transitions of objects causing
congestion in the real world that trigger increased prediction deviation. To
overcome these challenges, we propose the Spatial-Temporal Conv-sequence
Learning (STCL), in which a focused temporal block uses unidirectional
convolution to effectively capture short-term periodic temporal dependence, and
a spatial-temporal fusion module is able to extract the dependencies of both
interactions and decrease the feature dimensions. Moreover, the accidents
features impact on local traffic congestion and position encoding is employed
to detect anomalies in complex traffic situations. We conduct extensive
experiments on large-scale real-world tasks and verify the effectiveness of our
proposed method.
- Abstract(参考訳): インテリジェント交通システムにおいて、交通予測の重要な問題は、周期的時間的依存関係と複雑な空間的相関を抽出する方法である。
交通流予測の最先端手法は,グラフアーキテクチャやシーケンス学習モデルに基づくが,交通システムにおける空間時間的動的情報を完全に活用するものではない。
具体的には、短距離の時間的依存は繰り返しニューラルネットワークによって希釈され、畳み込み操作はグローバル平均プーリングを使用するため、既存のシーケンスモデルは局所的な空間情報を無視する。
さらに、現実世界の混雑を引き起こした物体の遷移中に、予測の偏差を増加させる交通事故が発生する。
これらの課題を克服するために、集中時間ブロックが一方向の畳み込みを用いて短期的時間的依存を効果的に捉え、空間的時間的融合モジュールが両方の相互作用の依存関係を抽出し、特徴次元を減少させることができる空間的時間的畳み込み学習(STCL)を提案する。
また,複雑な交通状況における異常を検出するために,局所的な交通渋滞や位置符号化の影響を特徴とする。
大規模実世界の課題を広範囲に実験し,提案手法の有効性を検証する。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
本稿では,交通渋滞イベント予測のための時間グラフニューラルポイントプロセスフレームワークSTNPPを提案する。
提案手法は,既存の最先端手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-11-15T01:22:47Z) - Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for
Traffic Flow Prediction [10.722455633629883]
本稿では交通流予測のためのトランスポート・ハブ対応時空間適応型グラフ変換器を提案する。
具体的には、動的空間依存を捉えるために、まず新しい空間自己認識モジュールを設計する。
また、トラフィックフローデータ中の動的時間パターンを検出するために、時間的自己アテンションモジュールを用いる。
論文 参考訳(メタデータ) (2023-10-12T13:44:35Z) - Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow
Prediction [13.426775574655135]
交通流予測のためのマルチスケール時空間リカレントネットワーク(MSSTRN)を提案する。
本研究では,適応的な位置グラフの畳み込みを自己認識機構に統合し,空間的時間的依存関係の同時捕捉を実現する空間的時間的同期的注意機構を提案する。
本モデルは,全20基準法と比較して,非自明なマージンで最高の予測精度を実現する。
論文 参考訳(メタデータ) (2023-10-12T08:52:36Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
このような相関関係は普遍的であり、交通流において重要な役割を担っていると我々は主張する。
交通センサの局所的時空間コンテキストを構築するための新しい時空間学習フレームワークを提案する。
提案したSTNNモデルは、目に見えない任意のトラフィックネットワークに適用できる。
論文 参考訳(メタデータ) (2021-09-11T09:04:35Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。