論文の概要: RST Parsing from Scratch
- arxiv url: http://arxiv.org/abs/2105.10861v1
- Date: Sun, 23 May 2021 06:19:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:32:22.149552
- Title: RST Parsing from Scratch
- Title(参考訳): スクラッチからのrst構文解析
- Authors: Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty, Xiaoli Li
- Abstract要約: 本稿では、RST(Rhetorical Structure Theory)フレームワークにおいて、文書レベルの言論解析の新しいエンドツーエンドの定式化を導入する。
本フレームワークは,会話のセグメンテーションを前提条件として必要とせず,スクラッチからの談話解析を容易にする。
我々の統合構文解析モデルでは、ビームサーチを用いて、最高の木構造を高速な木々の空間を探索することでデコードする。
- 参考スコア(独自算出の注目度): 14.548146390081778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel top-down end-to-end formulation of document-level
discourse parsing in the Rhetorical Structure Theory (RST) framework. In this
formulation, we consider discourse parsing as a sequence of splitting decisions
at token boundaries and use a seq2seq network to model the splitting decisions.
Our framework facilitates discourse parsing from scratch without requiring
discourse segmentation as a prerequisite; rather, it yields segmentation as
part of the parsing process. Our unified parsing model adopts a beam search to
decode the best tree structure by searching through a space of high-scoring
trees. With extensive experiments on the standard English RST discourse
treebank, we demonstrate that our parser outperforms existing methods by a good
margin in both end-to-end parsing and parsing with gold segmentation. More
importantly, it does so without using any handcrafted features, making it
faster and easily adaptable to new languages and domains.
- Abstract(参考訳): 本稿では、RST(Rhetorical Structure Theory)フレームワークにおいて、文書レベルの言論解析をエンド・ツー・エンドで新たに定義する。
本稿では,トークン境界での分割決定のシーケンスとして談話解析を検討し,seq2seqネットワークを用いて分割決定をモデル化する。
本フレームワークは,対話のセグメンテーションを前提条件として必要とせず,スクラッチからの談話解析を容易にする。
統一解析モデルは,高被覆木の空間を探索することで最良木構造をデコードするためにビーム探索を採用する。
標準的な英語RST談話木バンクに関する広範な実験により, パーサは, エンド・ツー・エンドのパースとゴールドセグメンテーションの双方において, 既存の手法よりも優れた性能を示すことを示した。
さらに重要なのは、手作りの機能を一切使わずに、新しい言語やドメインに素早く簡単に適応できることです。
関連論文リスト
- Growing Trees on Sounds: Assessing Strategies for End-to-End Dependency Parsing of Speech [8.550564152063522]
音声解析における2つの解析パラダイムの性能評価を目的とした一連の実験について報告する。
我々はこの評価をフランス語の大きな木バンクで行い、現実的な自発的な会話を特徴とする。
その結果, (i) グラフに基づく手法は, (ii) パラメータが30%少ないにもかかわらず, (ii) 音声から直接解析することで, パイプライン手法よりも優れた結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-06-18T13:46:10Z) - From Text Segmentation to Smart Chaptering: A Novel Benchmark for
Structuring Video Transcriptions [63.11097464396147]
音声コンテンツに焦点をあてた新しいベンチマークYTSegを導入し、その内容は本質的に非構造的であり、トポロジと構造的にも多様である。
また,高効率な階層分割モデルMiniSegを導入する。
論文 参考訳(メタデータ) (2024-02-27T15:59:37Z) - RST-style Discourse Parsing Guided by Document-level Content Structures [27.28989421841165]
既存のRTT解析パイプラインは、文書レベルのコンテンツ構造を知らずに修辞構造を構築する。
本稿では,構造を意識したニュースコンテンツ文表現を取り入れたRTT-DPのための新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2023-09-08T05:50:27Z) - Structured Dialogue Discourse Parsing [79.37200787463917]
談話解析は、多人数会話の内部構造を明らかにすることを目的としている。
本稿では,符号化と復号化という2つの観点から,従来の作業を改善する原理的手法を提案する。
実験の結果,本手法は,STACでは2.3,Mollweniでは1.5,先行モデルでは2.3を上回った。
論文 参考訳(メタデータ) (2023-06-26T22:51:01Z) - Cascading and Direct Approaches to Unsupervised Constituency Parsing on
Spoken Sentences [67.37544997614646]
本研究は,教師なし音声補聴における最初の研究である。
目的は, 音声文の階層的構文構造を, 選挙区解析木の形で決定することである。
正確なセグメンテーションだけでは、音声文を正確に解析するのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-15T17:57:22Z) - DMRST: A Joint Framework for Document-Level Multilingual RST Discourse
Segmentation and Parsing [24.986030179701405]
本稿では,EDUセグメンテーションと談話木解析を共同で行う文書レベルの多言語RST談話解析フレームワークを提案する。
本モデルは,すべてのサブタスクにおいて,文書レベルの多言語RST解析における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-10-09T09:15:56Z) - Sparse Fuzzy Attention for Structured Sentiment Analysis [48.69930912510414]
本研究では,プール層を有するスパース・ファジィアテンションスコアラを提案する。
さらに,2次解析を用いた構造化感情分析における解析モデルについて検討し,解析性能を著しく向上させる新しい2次エッジ構築手法を提案する。
論文 参考訳(メタデータ) (2021-09-14T14:37:56Z) - A Conditional Splitting Framework for Efficient Constituency Parsing [14.548146390081778]
本稿では,選択性解析問題(シンタクティックおよび談話構文解析)を一連の条件分割決定に当てはめる,汎用的なSeq2seq解析フレームワークを提案する。
解析モデルでは,テキストスパンで可能な分割点の条件付き確率分布を推定し,効率的なトップダウンデコーディングをサポートする。
談話分析では, 談話セグメンテーションを解析の特別な事例として扱うことができる。
論文 参考訳(メタデータ) (2021-06-30T00:36:34Z) - Span-based Semantic Parsing for Compositional Generalization [53.24255235340056]
SpanBasedSPは入力発話上のスパンツリーを予測し、部分的なプログラムが入力内のスパンをどのように構成するかを明示的に符号化する。
GeoQuery、SCAN、CLOSUREでは、SpanBasedSPはランダムスプリットの強いseq2seqベースラインと似ているが、構成一般化を必要とするスプリットのベースラインに比べて劇的に性能が向上する。
論文 参考訳(メタデータ) (2020-09-13T16:42:18Z) - A Simple Global Neural Discourse Parser [61.728994693410954]
本稿では,手作業で構築した特徴を必要とせず,学習したスパン表現のみに基づく簡易なグラフベースニューラル談話を提案する。
我々は,我々のモデルが世界規模で最高の性能を達成し,最先端の欲求に匹敵する性能を実証的に示す。
論文 参考訳(メタデータ) (2020-09-02T19:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。