論文の概要: Unsupervised Speech Recognition
- arxiv url: http://arxiv.org/abs/2105.11084v1
- Date: Mon, 24 May 2021 04:10:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:02:57.075312
- Title: Unsupervised Speech Recognition
- Title(参考訳): 教師なし音声認識
- Authors: Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, Michael Auli
- Abstract要約: wav2vec-Uは、ラベル付きデータなしで音声認識モデルを訓練する方法である。
我々は、自己教師付き音声表現を活用して、ラベルなし音声をセグメント化し、これらの表現から相手の訓練を通して音素へのマッピングを学習する。
より大きな英語のLibrispeechベンチマークでは、wav2vec-Uは、わずか2年前の960時間のラベル付きデータに基づいてトレーニングされた最も優れたシステムに匹敵する、他のテストで5.9の単語エラー率を達成した。
- 参考スコア(独自算出の注目度): 55.864459085947345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite rapid progress in the recent past, current speech recognition systems
still require labeled training data which limits this technology to a small
fraction of the languages spoken around the globe. This paper describes
wav2vec-U, short for wav2vec Unsupervised, a method to train speech recognition
models without any labeled data. We leverage self-supervised speech
representations to segment unlabeled audio and learn a mapping from these
representations to phonemes via adversarial training. The right representations
are key to the success of our method. Compared to the best previous
unsupervised work, wav2vec-U reduces the phoneme error rate on the TIMIT
benchmark from 26.1 to 11.3. On the larger English Librispeech benchmark,
wav2vec-U achieves a word error rate of 5.9 on test-other, rivaling some of the
best published systems trained on 960 hours of labeled data from only two years
ago. We also experiment on nine other languages, including low-resource
languages such as Kyrgyz, Swahili and Tatar.
- Abstract(参考訳): 近年の急速な進歩にもかかわらず、現在の音声認識システムは、この技術を世界中で話されている少数の言語に制限するラベル付きトレーニングデータを必要とする。
本稿では,ラベル付きデータなしで音声認識モデルを訓練するwav2vec-Uについて述べる。
自己教師付き音声表現を用いてラベルなし音声を分割し,これらの表現から対人訓練により音素へのマッピングを学ぶ。
正しい表現が私たちの方法の成功の鍵です。
これまでの最も優れた教師なしの作業と比較すると、wav2vec-UはTIMITベンチマークの音素誤り率を26.1から11.3に下げる。
より大きな英語のLibrispeechベンチマークでは、wav2vec-Uは、わずか2年前の960時間のラベル付きデータに基づいてトレーニングされた最も優れたシステムに匹敵する5.9の単語エラー率を達成した。
また、kyrgyz、swahili、tatarといった低リソース言語を含む9つの言語も実験しています。
関連論文リスト
- Improving Accented Speech Recognition using Data Augmentation based on Unsupervised Text-to-Speech Synthesis [30.97784092953007]
本稿では、アクセント付き音声認識を改善するためのデータ拡張手法として、教師なし音声合成(TTS)の使用について検討する。
TTSシステムは、手書き文字起こしではなく、少量のアクセント付き音声訓練データとそれらの擬似ラベルで訓練される。
この手法により,アクセント付き音声認識のためのデータ拡張を行うために,手書きの書き起こしを伴わないアクセント付き音声データを使用することが可能である。
論文 参考訳(メタデータ) (2024-07-04T16:42:24Z) - GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement [36.29371629234269]
GigaSpeech 2は大規模多言語音声認識コーパスである。
タイ語、インドネシア語、ベトナム語を含む約3万時間の音声が自動で書き起こされる。
論文 参考訳(メタデータ) (2024-06-17T13:44:20Z) - Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
微細な自己教師型多言語表現は絶対単語誤り率を最大20%削減する。
訓練データに制限のある状況では、自己教師付き表現を微調整することが、より良いパフォーマンスと実行可能なソリューションである。
論文 参考訳(メタデータ) (2023-11-25T17:05:21Z) - Simple and Effective Unsupervised Speech Translation [68.25022245914363]
ラベル付きデータなしで音声翻訳システムを構築するための,シンプルで効果的な手法について検討する。
事前学習された音声モデルに対する教師なし領域適応手法を提案する。
実験により、教師なし音声からテキストへの翻訳は、それまでの教師なし状態よりも優れていたことが示されている。
論文 参考訳(メタデータ) (2022-10-18T22:26:13Z) - Multilingual Zero Resource Speech Recognition Base on Self-Supervise
Pre-Trained Acoustic Models [14.887781621924255]
本稿では,事前学習モデルの使用を単語レベルのゼロリソース音声認識に拡張するための最初の試みである。
IPA音素の書き起こしで事前訓練されたモデルを微調整し、余分なテキストで訓練された言語モデルで復号する。
Wav2vec 2.0とHuBERTモデルの実験により、この手法は一部の言語で単語誤り率を20%以下に抑えることができることが示された。
論文 参考訳(メタデータ) (2022-10-13T12:11:18Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
音声の文脈化表現に雑音のロバスト性をエンコードするwav2vec-Switchを提案する。
具体的には、オリジナルノイズの多い音声ペアを同時にwav2vec 2.0ネットワークに供給する。
既存のコントラスト学習タスクに加えて、原音声と雑音音声の量子化表現を追加の予測対象に切り替える。
論文 参考訳(メタデータ) (2021-10-11T00:08:48Z) - Applying Wav2vec2.0 to Speech Recognition in Various Low-resource
Languages [16.001329145018687]
音声領域では、wav2vec2.0は、その強力な表現能力とLibrispeechコーパス上で超低リソース音声認識の実現性を示す。
しかし、wav2vec2.0は英語以外の実際の話シナリオや言語については検討されていない。
様々な言語の低リソース音声認識タスクを解決するために、事前学習モデルを適用します。
論文 参考訳(メタデータ) (2020-12-22T15:59:44Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z) - wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations [51.25118580050847]
音声のみから強力な表現を学習し、書き起こされた音声を微調整することで、最高の半教師付き手法よりも優れた性能を発揮することを示す。
wav2vec 2.0は、潜在空間で入力された音声を隠蔽し、共同で学習される潜在表現の量子化上で定義された対照的なタスクを解決する。
論文 参考訳(メタデータ) (2020-06-20T02:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。