論文の概要: Partition Function Estimation: A Quantitative Study
- arxiv url: http://arxiv.org/abs/2105.11132v1
- Date: Mon, 24 May 2021 07:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:19:03.295341
- Title: Partition Function Estimation: A Quantitative Study
- Title(参考訳): 分割関数の推定:定量的研究
- Authors: Durgesh Agrawal and Yash Pote and Kuldeep S Meel
- Abstract要約: グラフィカルモデルの分割関数は、関心の中心的な量である。
見積もりの品質に関する様々な保証とともに、長年にわたっていくつかの技術が提案されてきた。
私たちの実験では、正確な技術は近似した技術と同じくらい効率的であるという驚くべき観察結果が得られました。
- 参考スコア(独自算出の注目度): 25.782420501870295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic graphical models have emerged as a powerful modeling tool for
several real-world scenarios where one needs to reason under uncertainty. A
graphical model's partition function is a central quantity of interest, and its
computation is key to several probabilistic reasoning tasks. Given the
#P-hardness of computing the partition function, several techniques have been
proposed over the years with varying guarantees on the quality of estimates and
their runtime behavior. This paper seeks to present a survey of 18 techniques
and a rigorous empirical study of their behavior across an extensive set of
benchmarks. Our empirical study draws up a surprising observation: exact
techniques are as efficient as the approximate ones, and therefore, we conclude
with an optimistic view of opportunities for the design of approximate
techniques with enhanced scalability. Motivated by the observation of an order
of magnitude difference between the Virtual Best Solver and the best performing
tool, we envision an exciting line of research focused on the development of
portfolio solvers.
- Abstract(参考訳): 確率的グラフィカルモデルは、不確実性の下で推論する必要があるいくつかの現実シナリオの強力なモデリングツールとして登場した。
グラフィカルモデルの分割関数は関心の中心であり、その計算はいくつかの確率的推論タスクの鍵となる。
パーティション関数の計算における#P-hardnessを考えると、見積もりの質と実行時の振る舞いに関する様々な保証とともに、長年にわたっていくつかの技術が提案されてきた。
本稿では,18の手法に関する調査と,その挙動に関する厳密な実証的研究を,広範囲なベンチマークで実施することを目的とする。
正確な技術は近似技術と同じくらい効率的であるので、拡張性を高めた近似技術の設計の機会を楽観的に捉えて結論づける。
仮想ベストソルバーと最高のパフォーマンスツールとの等級差の観測により,ポートフォリオソルバーの開発に焦点をあてた,エキサイティングな研究ラインを構想した。
関連論文リスト
- Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
論文 参考訳(メタデータ) (2024-06-13T16:30:32Z) - Gradient Estimation and Variance Reduction in Stochastic and Deterministic Models [0.0]
この論文は制約のない非線形最適化問題を考察している。
このような問題の解決を可能にする鍵となる量である勾配そのものに着目する。
決定論と要素の双方に関わる問題の勾配を計算するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-14T14:41:58Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - What Image Features Boost Housing Market Predictions? [81.32205133298254]
本稿では,予測アルゴリズムにおける効率的な数値包摂のための視覚特徴抽出手法を提案する。
本稿では,シャノンのエントロピー,重心計算,画像分割,畳み込みニューラルネットワークなどの手法について論じる。
ここで選択された40の画像特徴のセットは、かなりの量の予測能力を持ち、最も強力なメタデータ予測器よりも優れています。
論文 参考訳(メタデータ) (2021-07-15T06:32:10Z) - How to Design Sample and Computationally Efficient VQA Models [53.65668097847456]
テキストを確率的プログラムとして表現し,イメージをオブジェクトレベルのシーングラフとして表現することが,これらのデシラタを最も満足していることが判明した。
既存のモデルを拡張して,これらのソフトプログラムとシーングラフを活用して,エンドツーエンドで質問応答ペアをトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T01:48:16Z) - Scalable Approximate Inference and Some Applications [2.6541211006790983]
本稿では,近似推論のための新しいフレームワークを提案する。
提案する4つのアルゴリズムは,Steinの手法の最近の計算進歩に動機付けられている。
シミュレーションおよび実データを用いた結果から,アルゴリズムの統計的効率と適用性を示す。
論文 参考訳(メタデータ) (2020-03-07T04:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。