Towards Compact CNNs via Collaborative Compression
- URL: http://arxiv.org/abs/2105.11228v1
- Date: Mon, 24 May 2021 12:07:38 GMT
- Title: Towards Compact CNNs via Collaborative Compression
- Authors: Yuchao Li, Shaohui Lin, Jianzhuang Liu, Qixiang Ye, Mengdi Wang, Fei
Chao, Fan Yang, Jincheng Ma, Qi Tian, Rongrong Ji
- Abstract summary: We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
- Score: 166.86915086497433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Channel pruning and tensor decomposition have received extensive attention in
convolutional neural network compression. However, these two techniques are
traditionally deployed in an isolated manner, leading to significant accuracy
drop when pursuing high compression rates. In this paper, we propose a
Collaborative Compression (CC) scheme, which joints channel pruning and tensor
decomposition to compress CNN models by simultaneously learning the model
sparsity and low-rankness. Specifically, we first investigate the compression
sensitivity of each layer in the network, and then propose a Global Compression
Rate Optimization that transforms the decision problem of compression rate into
an optimization problem. After that, we propose multi-step heuristic
compression to remove redundant compression units step-by-step, which fully
considers the effect of the remaining compression space (i.e., unremoved
compression units). Our method demonstrates superior performance gains over
previous ones on various datasets and backbone architectures. For example, we
achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with
only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
Related papers
- Order of Compression: A Systematic and Optimal Sequence to Combinationally Compress CNN [5.25545980258284]
We propose a systematic and optimal sequence to apply multiple compression techniques in the most effective order.
Our proposed Order of Compression significantly reduces computational costs by up to 859 times on ResNet34, with negligible accuracy loss.
We believe our simple yet effective exploration of the order of compression will shed light on the practice of model compression.
arXiv Detail & Related papers (2024-03-26T07:26:00Z) - Ultra Dual-Path Compression For Joint Echo Cancellation And Noise
Suppression [38.09558772881095]
Under fixed compression ratios, dual-path compression combining both the time and frequency methods will give further performance improvement.
Proposed models show competitive performance compared with fast FullSubNet and DeepNetFilter.
arXiv Detail & Related papers (2023-08-21T21:36:56Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
We propose a post-training model size compression method that combines lossy and lossless compression in a unified way.
Our method can achieve a stable $10times$ compression ratio without sacrificing accuracy and a $20times$ compression ratio with minor accuracy loss in a short time.
arXiv Detail & Related papers (2023-08-08T14:10:16Z) - DiffRate : Differentiable Compression Rate for Efficient Vision
Transformers [98.33906104846386]
Token compression aims to speed up large-scale vision transformers (e.g. ViTs) by pruning (dropping) or merging tokens.
DiffRate is a novel token compression method that has several appealing properties prior arts do not have.
arXiv Detail & Related papers (2023-05-29T10:15:19Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
End-to-end deep trainable models are about to exceed the performance of the traditional handcrafted compression techniques on videos and images.
We propose a simple yet efficient instance-based parameterization method to reduce this amortization gap at a minor cost.
arXiv Detail & Related papers (2022-09-02T11:43:45Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Optimal Rate Adaption in Federated Learning with Compressed
Communications [28.16239232265479]
Federated Learning incurs high communication overhead, which can be greatly alleviated by compression for model updates.
tradeoff between compression and model accuracy in the networked environment remains unclear.
We present a framework to maximize the final model accuracy by strategically adjusting the compression each iteration.
arXiv Detail & Related papers (2021-12-13T14:26:15Z) - Compressing Neural Networks: Towards Determining the Optimal Layer-wise
Decomposition [62.41259783906452]
We present a novel global compression framework for deep neural networks.
It automatically analyzes each layer to identify the optimal per-layer compression ratio.
Our results open up new avenues for future research into the global performance-size trade-offs of modern neural networks.
arXiv Detail & Related papers (2021-07-23T20:01:30Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) is a threshold-based sparsification scheme that enjoys similar threshold estimation quality to deep gradient compression (DGC)
Our evaluation shows SIDCo speeds up training by up to 41:7%, 7:6%, and 1:9% compared to the no-compression baseline, Topk, and DGC compressors, respectively.
arXiv Detail & Related papers (2021-01-26T13:06:00Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.