Optimal Rate Adaption in Federated Learning with Compressed
Communications
- URL: http://arxiv.org/abs/2112.06694v1
- Date: Mon, 13 Dec 2021 14:26:15 GMT
- Title: Optimal Rate Adaption in Federated Learning with Compressed
Communications
- Authors: Laizhong Cui, Xiaoxin Su, Yipeng Zhou, Jiangchuan Liu
- Abstract summary: Federated Learning incurs high communication overhead, which can be greatly alleviated by compression for model updates.
tradeoff between compression and model accuracy in the networked environment remains unclear.
We present a framework to maximize the final model accuracy by strategically adjusting the compression each iteration.
- Score: 28.16239232265479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) incurs high communication overhead, which can be
greatly alleviated by compression for model updates. Yet the tradeoff between
compression and model accuracy in the networked environment remains unclear
and, for simplicity, most implementations adopt a fixed compression rate only.
In this paper, we for the first time systematically examine this tradeoff,
identifying the influence of the compression error on the final model accuracy
with respect to the learning rate. Specifically, we factor the compression
error of each global iteration into the convergence rate analysis under both
strongly convex and non-convex loss functions. We then present an adaptation
framework to maximize the final model accuracy by strategically adjusting the
compression rate in each iteration. We have discussed the key implementation
issues of our framework in practical networks with representative compression
algorithms. Experiments over the popular MNIST and CIFAR-10 datasets confirm
that our solution effectively reduces network traffic yet maintains high model
accuracy in FL.
Related papers
- Bandwidth-Aware and Overlap-Weighted Compression for Communication-Efficient Federated Learning [29.727339562140653]
Current data compression methods, such as sparsification in Federated Averaging (FedAvg), effectively enhance the communication efficiency of Federated Learning (FL)
These methods encounter challenges such as the straggler problem and diminished model performance due to heterogeneous bandwidth and non-IID data.
We introduce a bandwidth-aware compression framework for FL, aimed at improving communication efficiency while mitigating the problems associated with non-IID data.
arXiv Detail & Related papers (2024-08-27T02:28:27Z) - Communication-Efficient Distributed Learning with Local Immediate Error
Compensation [95.6828475028581]
We propose the Local Immediate Error Compensated SGD (LIEC-SGD) optimization algorithm.
LIEC-SGD is superior to previous works in either the convergence rate or the communication cost.
arXiv Detail & Related papers (2024-02-19T05:59:09Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
In Federated Learning (FL) paradigm, a parameter server (PS) concurrently communicates with distributed participating clients for model collection, update aggregation, and model distribution over multiple rounds.
We show strong evidences that variable-length is beneficial for compression in FL.
We present Fed-CVLC (Federated Learning Compression with Variable-Length Codes), which fine-tunes the code length in response to the dynamics of model updates.
arXiv Detail & Related papers (2024-02-06T07:25:21Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
We propose an ultrafast automated model compression framework called SeerNet for flexible network deployment.
Our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost.
arXiv Detail & Related papers (2023-04-13T10:52:49Z) - L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and
Accurate Deep Learning [24.712888488317816]
We provide a framework for adapting the degree of compression across the model's layers dynamically during training.
Our framework, called L-GreCo, is based on an adaptive algorithm, which automatically picks the optimal compression parameters for model layers.
arXiv Detail & Related papers (2022-10-31T14:37:41Z) - Optimizing the Communication-Accuracy Trade-off in Federated Learning
with Rate-Distortion Theory [1.5771347525430772]
A significant bottleneck in federated learning is the network communication cost of sending model updates from client devices to the central server.
Our method encodes quantized updates with an appropriate universal code, taking into account their empirical distribution.
Because quantization introduces error, we select quantization levels by optimizing for the desired trade-off in average total gradient and distortion.
arXiv Detail & Related papers (2022-01-07T20:17:33Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Neural Network Compression Via Sparse Optimization [23.184290795230897]
We propose a model compression framework based on the recent progress on sparse optimization.
We achieve up to 7.2 and 2.9 times FLOPs reduction with the same level of evaluation of accuracy on VGG16 for CIFAR10 and ResNet50 for ImageNet.
arXiv Detail & Related papers (2020-11-10T03:03:55Z) - Accordion: Adaptive Gradient Communication via Critical Learning Regime
Identification [12.517161466778655]
Distributed model training suffers from communication bottlenecks due to frequent model updates transmitted across compute nodes.
To alleviate these bottlenecks, practitioners use gradient compression techniques like sparsification, quantization, or low-rank updates.
In this work, we show that such performance degradation due to choosing a high compression ratio is not fundamental.
An adaptive compression strategy can reduce communication while maintaining final test accuracy.
arXiv Detail & Related papers (2020-10-29T16:41:44Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
arXiv Detail & Related papers (2020-02-19T12:03:10Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
We propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks.
In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost.
We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy.
arXiv Detail & Related papers (2020-02-10T10:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.