Quantum efficiency, purity and stability of a tunable, narrowband
microwave single-photon source
- URL: http://arxiv.org/abs/2105.11234v1
- Date: Mon, 24 May 2021 12:19:39 GMT
- Title: Quantum efficiency, purity and stability of a tunable, narrowband
microwave single-photon source
- Authors: Yong Lu, Andreas Bengtsson, Jonathan J.Burnett, Baladitya Suri, Sankar
Raman Sathyamoorthy, Hampus Renberg Nilsson, Marco Scigliuzzo, Jonas
Bylander, G\"oran Johansson, Per Delsing
- Abstract summary: We demonstrate an on-demand source of microwave single photons with 71--99% intrinsic quantum efficiency.
The source is narrowband (300unitekHz) and tuneable over a 600 MHz range around 5.2 GHz.
- Score: 0.2949225575200669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate an on-demand source of microwave single photons with 71--99\%
intrinsic quantum efficiency. The source is narrowband (300\unite{kHz}) and
tuneable over a 600 MHz range around 5.2 GHz. Such a device is an important
element in numerous quantum technologies and applications. The device consists
of a superconducting transmon qubit coupled to the open end of a transmission
line. A $\pi$-pulse excites the qubit, which subsequently rapidly emits a
single photon into the transmission line. A cancellation pulse then suppresses
the reflected $\pi$-pulse by 33.5 dB, resulting in 0.005 photons leaking into
the photon emission channel. We verify strong antibunching of the emitted
photon field and determine its Wigner function. Non-radiative decay and $1/f$
flux noise both affect the quantum efficiency. We also study the device
stability over time and identify uncorrelated discrete jumps of the pure
dephasing rate at different qubit frequencies on a time scale of hours, which
we attribute to independent two-level system defects in the device dielectrics,
dispersively coupled to the qubit.
Related papers
- Bandwidth-tunable Telecom Single Photons Enabled by Low-noise Optomechanical Transduction [45.37752717923078]
Single-photon sources are of fundamental importance to emergent quantum technologies.
Nano-structured optomechanical crystals provide an attractive platform for single photon generation.
Optical absorption heating has thus far prevented these systems from being widely used in practical applications.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - Indistinguishable telecom band photons from a single erbium ion in the
solid state [0.0]
We implant Er$3+$ into CaWO$_4$, a material that combines a non-polar site symmetry, low decoherence from nuclear spins, and is free of background rare earth ions.
We observe single-scan optical linewidths of 150 kHz and long-term spectral diffusion of 63 kHz, both close to the Purcell-enhanced radiative linewidth of 21 kHz.
This represents a significant step towards the construction of telecom-band quantum repeater networks with single Er$3+$ ions.
arXiv Detail & Related papers (2023-01-09T18:29:53Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Quantum interference between independent solid-state single-photon
sources separated by 300 km fiber [9.597915082806276]
We report quantum interference between two single photons from independent QDs separated by 302 km optical fiber.
Our work represents a key step to long-distance solid-state quantum networks.
arXiv Detail & Related papers (2021-06-29T16:27:28Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Electron shelving of a superconducting artificial atom [0.0]
We demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide.
Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state.
The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model.
arXiv Detail & Related papers (2020-08-06T01:50:09Z) - Cavity quantum electro-optics: Microwave-telecom conversion in the
quantum ground state [0.0]
We present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons.
The device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields.
arXiv Detail & Related papers (2020-05-26T14:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.