論文の概要: Generation of COVID-19 Chest CT Scan Images using Generative Adversarial
Networks
- arxiv url: http://arxiv.org/abs/2105.11241v1
- Date: Thu, 20 May 2021 13:04:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-29 19:56:05.856193
- Title: Generation of COVID-19 Chest CT Scan Images using Generative Adversarial
Networks
- Title(参考訳): 世代交叉ネットワークを用いた新型コロナウイルス胸部CT画像の生成
- Authors: Prerak Mann, Sahaj Jain, Saurabh Mittal, Aruna Bhat
- Abstract要約: SARS-CoV-2は、新型コロナウイルスに感染するウイルス性伝染病で、世界中で急速に広まっている。
拡散を減らすために人々をテストし、分離することが非常に重要であり、ここからは、これを迅速かつ効率的に行う必要がある。
いくつかの研究によると、Chest-CTは、新型コロナウイルス患者の診断において、現在の標準であるRT-PCR検査より優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: SARS-CoV-2, also known as COVID-19 or Coronavirus, is a viral contagious
disease that is infected by a novel coronavirus, and has been rapidly spreading
across the globe. It is very important to test and isolate people to reduce
spread, and from here comes the need to do this quickly and efficiently.
According to some studies, Chest-CT outperforms RT-PCR lab testing, which is
the current standard, when diagnosing COVID-19 patients. Due to this, computer
vision researchers have developed various deep learning systems that can
predict COVID-19 using a Chest-CT scan correctly to a certain degree. The
accuracy of these systems is limited since deep learning neural networks such
as CNNs (Convolutional Neural Networks) need a significantly large quantity of
data for training in order to produce good quality results. Since the disease
is relatively recent and more focus has been on CXR (Chest XRay) images, the
available chest CT Scan image dataset is much less. We propose a method, by
utilizing GANs, to generate synthetic chest CT images of both positive and
negative COVID-19 patients. Using a pre-built predictive model, we concluded
that around 40% of the generated images are correctly predicted as COVID-19
positive. The dataset thus generated can be used to train a CNN-based
classifier which can help determine COVID-19 in a patient with greater
accuracy.
- Abstract(参考訳): SARS-CoV-2(英語:SARS-CoV-2)は、新型コロナウイルス(COVID-19)またはコロナウイルス(Coronavirus)とも呼ばれる、新型コロナウイルスに感染するウイルス感染症である。
拡散を減らすために人々をテストし、分離することが非常に重要であり、ここからは、これを迅速かつ効率的に行う必要がある。
いくつかの研究によると、Chest-CTは新型コロナウイルス患者の診断において、現在の標準であるRT-PCR検査を上回っている。
このため、コンピュータビジョンの研究者たちは、Chest-CTスキャンを使って新型コロナウイルスを予測する様々なディープラーニングシステムを開発した。
cnn(convolutional neural network)のようなディープラーニングニューラルネットワークは、高品質な結果を生み出すためにトレーニングのためにかなりの量のデータを必要とするため、これらのシステムの精度は限られている。
比較的最近の疾患であり、CXR(Chest XRay)画像に焦点が当てられているため、利用可能な胸部CTスキャン画像データセットははるかに少ない。
そこで本研究では,gansを用いて陽性例と陰性例の胸部ct画像を生成する方法を提案する。
事前に構築した予測モデルを用いて、生成された画像の約40%が新型コロナウイルス陽性と正しく予測されていると結論づけた。
このように生成されたデータセットは、CNNベースの分類器のトレーニングに使用することができる。
関連論文リスト
- COVID-19 Detection using Transfer Learning with Convolutional Neural
Network [0.0]
新型コロナウイルス(COVID-19)は、2019年12月に中国湖北省武漢で初めて確認された致命的な感染症である。
本研究では,CT画像からCOVID-19感染を検出するためのトランスファーラーニング戦略(CNN)を提案する。
提案モデルでは,Transfer Learning Model Inception V3を用いた多層畳み込みニューラルネットワーク(CNN)が設計されている。
論文 参考訳(メタデータ) (2022-06-17T05:30:14Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19(コロナウイルス)は、重症急性呼吸器症候群ウイルス(SARS-CoV-2)によるパンデミックである。
2019年12月中旬、中国武漢の湖北省で初感染が確認された。
全世界で7550万件以上が確認され、167万件以上が死亡している。
論文 参考訳(メタデータ) (2022-01-24T21:12:25Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved
Covid-19 Detection [6.123089440692208]
ウイルス(covid-19)は重症急性呼吸器症候群(sarscov-2)によるウイルス性疾患である。
初期の結果は、covid-19を示唆する患者の胸部x線に異常が存在することを示唆している。
convolutional neural networks(cnns)のようなディープラーニングシステムは、かなりの量のトレーニングデータを必要とする。
論文 参考訳(メタデータ) (2021-03-08T21:53:29Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
胸部CT画像からのCOVID-19検出のための深部ニューラルネットワークであるCOVID-Net CT-2を導入する。
説明力を活用して、COVID-Net CT-2の意思決定行動を調査します。
結果は有望であり、コンピュータ支援型COVID-19アセスメントの有効なツールとして、ディープニューラルネットワークの強い可能性を示唆している。
論文 参考訳(メタデータ) (2021-01-19T03:04:09Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
最近の研究で、新型コロナウイルス患者のX線写真には、新型コロナウイルスに関する情報が含まれていることが示されている。
胸部X線(CXR)は、高速な撮像時間、広範囲の可用性、低コスト、可搬性から注目されている。
本研究では、CXR画像から新型コロナウイルスの分類を改善するために、新しい多機能畳み込みニューラルネットワーク(CNN)アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-11-06T20:26:26Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
新型コロナウイルス(COVID-19)が世界中に広がる中で、医療機関は患者を診断し、必要な頻度で検査する能力を失っている。
研究は、胸部X線でウイルス性細菌性肺炎から新型コロナウイルスを検出できる有望な結果を示している。
本研究では,ラベルやトレーニングデータを必要とせず,未知のクラス(COVID-19)の画像を検出するランダム化生成敵ネットワーク(RANDGAN)を提案する。
論文 参考訳(メタデータ) (2020-10-06T15:58:09Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。