論文の概要: Improving Few-shot Learning with Weakly-supervised Object Localization
- arxiv url: http://arxiv.org/abs/2105.11715v1
- Date: Tue, 25 May 2021 07:39:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 00:25:47.801393
- Title: Improving Few-shot Learning with Weakly-supervised Object Localization
- Title(参考訳): 弱教師付きオブジェクトローカライズによるマイズショット学習の改善
- Authors: Inyong Koo, Minki Jeong, Changick Kim
- Abstract要約: 画像のクラス関連領域から特徴を抽出してクラス表現を生成する新しいフレームワークを提案する。
提案手法は, miniImageNet および tieredImageNet ベンチマークにおいて,ベースライン数ショットモデルよりも優れている。
- 参考スコア(独自算出の注目度): 24.3569501375842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot learning often involves metric learning-based classifiers, which
predict the image label by comparing the distance between the extracted feature
vector and class representations. However, applying global pooling in the
backend of the feature extractor may not produce an embedding that correctly
focuses on the class object. In this work, we propose a novel framework that
generates class representations by extracting features from class-relevant
regions of the images. Given only a few exemplary images with image-level
labels, our framework first localizes the class objects by spatially
decomposing the similarity between the images and their class prototypes. Then,
enhanced class representations are achieved from the localization results. We
also propose a loss function to enhance distinctions of the refined features.
Our method outperforms the baseline few-shot model in miniImageNet and
tieredImageNet benchmarks.
- Abstract(参考訳): 少ないショット学習では、抽出した特徴ベクトルとクラス表現との距離を比較することで、画像ラベルを予測するメトリック学習ベースの分類器が用いられる。
しかし、機能抽出器のバックエンドにグローバルプーリングを適用することは、クラスオブジェクトに正しくフォーカスする埋め込みを生成しないかもしれない。
本研究では,画像のクラス関連領域から特徴を抽出し,クラス表現を生成する新しいフレームワークを提案する。
画像レベルのラベルを持つサンプル画像がいくつかある場合,我々はまず,画像とクラスプロトタイプの類似性を空間的に分解することにより,クラスオブジェクトをローカライズする。
そして、ローカライゼーション結果から強化されたクラス表現を達成する。
また,改良された特徴の区別を高めるための損失関数を提案する。
提案手法は, miniImageNet および tieredImageNet ベンチマークにおいて,ベースライン数ショットモデルよりも優れている。
関連論文リスト
- What's in a Name? Beyond Class Indices for Image Recognition [28.02490526407716]
そこで本稿では,カテゴリの巨大語彙のみを先行情報として付与した画像に,クラス名を割り当てる視覚言語モデルを提案する。
非パラメトリックな手法を用いて画像間の有意義な関係を確立することにより、モデルが候補名のプールを自動的に絞り込むことができる。
本手法は,教師なし環境でのImageNetのベースラインを約50%改善する。
論文 参考訳(メタデータ) (2023-04-05T11:01:23Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
属性ローカライズ機能を統合した画像表現は、任意のショット、すなわちゼロショットと少数ショットのイメージ分類タスクに有用である、と我々は主張する。
クラスレベルの属性のみを用いてグローバルな特徴とローカルな特徴を共同で学習する新しい表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-04T02:25:40Z) - Matching Feature Sets for Few-Shot Image Classification [22.84472344406448]
セットベースの表現は本質的に、ベースクラスからの画像のよりリッチな表現を構築します。
私たちのアプローチは、SetFeatと呼ばれ、既存のエンコーダアーキテクチャに浅い自己アテンションメカニズムを組み込んでいます。
論文 参考訳(メタデータ) (2022-04-02T22:42:54Z) - Local and Global GANs with Semantic-Aware Upsampling for Image
Generation [201.39323496042527]
ローカルコンテキストを用いて画像を生成することを検討する。
セマンティックマップをガイダンスとして用いたクラス固有の生成ネットワークを提案する。
最後に,セマンティック・アウェア・アップサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T19:24:25Z) - Prototypical Region Proposal Networks for Few-Shot Localization and
Classification [1.5100087942838936]
分割と分類をエンドツーエンドの分類モデルであるPRoPnetに統一するフレームワークを開発する。
本手法は,複数のオブジェクトクラスを含む自然シーンを用いた画像データセットの精度向上を実証した。
論文 参考訳(メタデータ) (2021-04-08T04:03:30Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z) - One-Shot Image Classification by Learning to Restore Prototypes [11.448423413463916]
ワンショット画像分類は、カテゴリ毎に1つの画像しか持たないデータセット上で、イメージ分類器を訓練することを目的としている。
ワンショット学習では、既存のメトリック学習アプローチは、単一のトレーニングイメージがクラスを代表するものではない可能性があるため、パフォーマンスが低下する。
本稿では,RestoreNet で表される単純な回帰モデルを提案する。画像特徴のクラス変換を学習し,特徴空間のクラス中心に画像を移動させる。
論文 参考訳(メタデータ) (2020-05-04T02:11:30Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
少数のサンプルから新しい視覚カテゴリーを学習することを目的としている。
本稿では,自己認識型補完モジュール(SACモジュール)を提案する。
また,数発の分類のために,識別的深層記述子を選択するためのアクティブマスクも生成する。
論文 参考訳(メタデータ) (2020-03-02T14:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。