Public Transportation Demand Analysis: A Case Study of Metropolitan
Lagos
- URL: http://arxiv.org/abs/2105.11816v1
- Date: Tue, 25 May 2021 10:35:30 GMT
- Title: Public Transportation Demand Analysis: A Case Study of Metropolitan
Lagos
- Authors: Ozioma Paul and Patrick McSharry
- Abstract summary: Lagos is experiencing rapid urbanization and currently has a population of just under 15 million.
Long waiting times and uncertain travel times has driven many people to acquire their own vehicle or use alternative modes of transport.
This paper investigates urban travel demand in Lagos and explores passenger dynamics in time and space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modelling, simulation, and forecasting offer a means of facilitating better
planning and decision-making. These quantitative approaches can add value
beyond traditional methods that do not rely on data and are particularly
relevant for public transportation. Lagos is experiencing rapid urbanization
and currently has a population of just under 15 million. Both long waiting
times and uncertain travel times has driven many people to acquire their own
vehicle or use alternative modes of transport. This has significantly increased
the number of vehicles on the roads leading to even more traffic and greater
traffic congestion. This paper investigates urban travel demand in Lagos and
explores passenger dynamics in time and space. Using individual commuter trip
data from tickets purchased from the Lagos State Bus Rapid Transit (BRT), the
demand patterns through the hours of the day, days of the week and bus stations
are analysed. This study aims to quantify demand from actual passenger trips
and estimate the impact that dynamic scheduling could have on passenger waiting
times. Station segmentation is provided to cluster stations by their demand
characteristics in order to tailor specific bus schedules. Intra-day public
transportation demand in Lagos BRT is analysed and predictions are compared.
Simulations using fixed and dynamic bus scheduling demonstrate that the average
waiting time could be reduced by as much as 80%. The load curves, insights and
the approach developed will be useful for informing policymaking in Lagos and
similar African cities facing the challenges of rapid urbanization.
Related papers
- Traffic Smoothing Controllers for Autonomous Vehicles Using Deep
Reinforcement Learning and Real-World Trajectory Data [45.13152172664334]
We design traffic-smoothing cruise controllers that can be deployed onto autonomous vehicles.
We leverage real-world trajectory data from the I-24 highway in Tennessee.
We show that at a low 4% autonomous vehicle penetration rate, we achieve significant fuel savings of over 15% on trajectories exhibiting many stop-and-go waves.
arXiv Detail & Related papers (2024-01-18T00:50:41Z) - On Designing Day Ahead and Same Day Ridership Level Prediction Models
for City-Scale Transit Networks Using Noisy APC Data [0.0]
We propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership.
We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN.
arXiv Detail & Related papers (2022-10-10T19:50:59Z) - A Dynamic Model for Bus Arrival Time Estimation based on Spatial
Patterns using Machine Learning [1.2891210250935146]
Bus arrival prediction model is proposed for forecasting the arrival time using limited data sets.
One of the routes of Tumakuru city service, Tumakuru, India, is selected and divided into two spatial patterns.
A model to dynamically predict bus arrival time is developed using the preceding trip information and the machine learning model to estimate the arrival time at a downstream bus stop.
arXiv Detail & Related papers (2022-10-03T06:35:03Z) - Meta-Learning over Time for Destination Prediction Tasks [53.12827614887103]
A need to understand and predict vehicles' behavior underlies both public and private goals in the transportation domain.
Recent studies have found, at best, only marginal improvements in predictive performance from incorporating temporal information.
We propose an approach based on hypernetworks, in which a neural network learns to change its own weights in response to an input.
arXiv Detail & Related papers (2022-06-29T17:58:12Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Identifying the Factors that Influence Urban Public Transit Demand [0.0]
The rise in urbanization throughout the United States (US) in recent years has required urban planners and transportation engineers to have greater consideration for the transportation services available to residents of a metropolitan region.
These improvements can be achieved by identifying and understanding the factors that influence urban public transit demand.
Common factors that can influence urban public transit demand can be internal and/or external factors.
arXiv Detail & Related papers (2021-11-16T05:37:51Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Polestar: An Intelligent, Efficient and National-Wide Public
Transportation Routing Engine [43.09401975244128]
We present Polestar, a data-driven engine for intelligent and efficient public transportation routing.
Specifically, we first propose a novel Public Transportation Graph (PTG) to model public transportation system in terms of various travel costs.
We then introduce a general route search algorithm coupled with an efficient station binding method for efficient route candidate generation.
Experiments on two real-world data sets demonstrate the advantages of Polestar in terms of both efficiency and effectiveness.
arXiv Detail & Related papers (2020-07-11T05:14:52Z) - Extracting Spatiotemporal Demand for Public Transit from Mobility Data [0.0]
Changing urban demographics pose several challenges to efficient management of transit services.
We propose a method to identify a simple method to estimate demand for public transit in a city.
arXiv Detail & Related papers (2020-06-05T10:21:31Z) - Smart Urban Mobility: When Mobility Systems Meet Smart Data [55.456196356335745]
Cities around the world are expanding dramatically, with urban population growth reaching nearly 2.5 billion people in urban areas and road traffic growth exceeding 1.2 billion cars by 2050.
The economic contribution of the transport sector represents 5% of the GDP in Europe and costs an average of US $482.05 billion in the U.S.
arXiv Detail & Related papers (2020-05-09T13:53:01Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
We propose a novel and accurate traffic flow prediction method based on symbolic regression enhanced with a lag operator.
Our approach produces robust models suitable for the intricacies of urban roads, much more difficult to predict than highways.
arXiv Detail & Related papers (2020-02-14T16:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.