Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data
- URL: http://arxiv.org/abs/2002.06095v1
- Date: Fri, 14 Feb 2020 16:03:04 GMT
- Title: Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data
- Authors: Alina Patelli, Victoria Lush, Aniko Ekart, Elisabeth Ilie-Zudor
- Abstract summary: We propose a novel and accurate traffic flow prediction method based on symbolic regression enhanced with a lag operator.
Our approach produces robust models suitable for the intricacies of urban roads, much more difficult to predict than highways.
- Score: 0.8602553195689513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The continuous expansion of the urban traffic sensing infrastructure has led
to a surge in the volume of widely available road related data. Consequently,
increasing effort is being dedicated to the creation of intelligent
transportation systems, where decisions on issues ranging from city-wide road
maintenance planning to improving the commuting experience are informed by
computational models of urban traffic instead of being left entirely to humans.
The automation of traffic management has received substantial attention from
the research community, however, most approaches target highways, produce
predictions valid for a limited time window or require expensive retraining of
available models in order to accurately forecast traffic at a new location. In
this article, we propose a novel and accurate traffic flow prediction method
based on symbolic regression enhanced with a lag operator. Our approach
produces robust models suitable for the intricacies of urban roads, much more
difficult to predict than highways. Additionally, there is no need to retrain
the model for a period of up to 9 weeks. Furthermore, the proposed method
generates models that are transferable to other segments of the road network,
similar to, yet geographically distinct from the ones they were initially
trained on. We demonstrate the achievement of these claims by conducting
extensive experiments on data collected from the Darmstadt urban
infrastructure.
Related papers
- A Predictive and Optimization Approach for Enhanced Urban Mobility Using Spatiotemporal Data [0.0]
This study introduces a novel method for enhancing urban mobility by combining machine learning algorithms with live traffic information.
We developed predictive models for journey time and congestion analysis using data from New York City's yellow taxi trips.
This research contributes to ongoing efforts aimed at reducing urban congestion and improving transportation efficiency through advanced data-driven methods.
arXiv Detail & Related papers (2024-10-07T16:16:49Z) - Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling [0.0]
This study aims to develop a predictive model for congestion at intersections in major U.S. cities.
The dataset encompasses 27 features, including coordinates, street names, time of day, and traffic metrics.
arXiv Detail & Related papers (2024-04-12T22:53:41Z) - TrafPS: A Shapley-based Visual Analytics Approach to Interpret Traffic [39.8945062366245]
TrafPS is a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban planning.
Based on the task requirement from the domain experts, we employ an interactive visual interface for multi-aspect exploration and analysis of significant flow patterns.
Two real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and decision-making support for urban planning.
arXiv Detail & Related papers (2024-03-07T01:00:55Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Predicting the traffic flux in the city of Valencia with Deep Learning [0.0]
We investigate whether a high amount of data on traffic flow throughout a city allows an Artificial Intelligence to predict the traffic flux far enough in advance in order to enable emission reduction measures such as those linked to the Low Emission Zone policies.
To build a predictive model, we use the city of Valencia traffic sensor system, one of the densest in the world, with nearly 3500 sensors distributed throughout the city.
We show that the LSTM is capable of predicting future evolution of the traffic flux in real-time, by extracting patterns out of the measured data.
arXiv Detail & Related papers (2022-10-04T14:19:06Z) - Urban traffic dynamic rerouting framework: A DRL-based model with
fog-cloud architecture [0.7046417074932257]
This study proposes a two-stage model that combines GAQ (Graph Attention Network - Deep Q Learning) and EBkSP (Entropy Based k Shortest Path)
First, GAQ analyzes the traffic conditions on each road and for each fog area, and then assigns a road index based on the information attention from both local and neighboring areas.
Second, EBkSP assigns the route for each vehicle based on the vehicle priority and route popularity.
arXiv Detail & Related papers (2021-10-11T18:15:44Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
The proposed system includes an optimization-based OD matrix generation method, a Neural Network (NN) model trained to predict OD matrices via the pattern of traffic flow and a microscopic traffic simulator.
We test the proposed system on the road network of the central terminal area (CTA) of the Los Angeles International Airport (LAX)
arXiv Detail & Related papers (2020-08-05T01:41:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.