BASS: Boosting Abstractive Summarization with Unified Semantic Graph
- URL: http://arxiv.org/abs/2105.12041v1
- Date: Tue, 25 May 2021 16:20:48 GMT
- Title: BASS: Boosting Abstractive Summarization with Unified Semantic Graph
- Authors: Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu, Ziqiang Cao, Sujian Li,
Hua Wu, Haifeng Wang
- Abstract summary: BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
- Score: 49.48925904426591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abstractive summarization for long-document or multi-document remains
challenging for the Seq2Seq architecture, as Seq2Seq is not good at analyzing
long-distance relations in text. In this paper, we present BASS, a novel
framework for Boosting Abstractive Summarization based on a unified Semantic
graph, which aggregates co-referent phrases distributing across a long range of
context and conveys rich relations between phrases. Further, a graph-based
encoder-decoder model is proposed to improve both the document representation
and summary generation process by leveraging the graph structure. Specifically,
several graph augmentation methods are designed to encode both the explicit and
implicit relations in the text while the graph-propagation attention mechanism
is developed in the decoder to select salient content into the summary.
Empirical results show that the proposed architecture brings substantial
improvements for both long-document and multi-document summarization tasks.
Related papers
- Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text
Documents via Semantic-Oriented Hierarchical Graphs [79.0426838808629]
We propose TAT-DQA, i.e. to answer the question over a visually-rich table-text document.
Specifically, we propose a novel Doc2SoarGraph framework with enhanced discrete reasoning capability.
We conduct extensive experiments on TAT-DQA dataset, and the results show that our proposed framework outperforms the best baseline model by 17.73% and 16.91% in terms of Exact Match (EM) and F1 score respectively on the test set.
arXiv Detail & Related papers (2023-05-03T07:30:32Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
We focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings.
Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework.
Motivated by this, we propose a Graph-based Supervised Summarization model (GSS) to achieve more accurate results on the task when large-scale labeled data are available.
arXiv Detail & Related papers (2022-12-08T11:53:12Z) - GoSum: Extractive Summarization of Long Documents by Reinforcement
Learning and Graph Organized discourse state [6.4805900740861]
We propose GoSum, a reinforcement-learning-based extractive model for long-paper summarization.
GoSum encodes states by building a heterogeneous graph from different discourse levels for each input document.
We evaluate the model on two datasets of scientific articles summarization: PubMed and arXiv.
arXiv Detail & Related papers (2022-11-18T14:07:29Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
We propose FactGraph, a method that decomposes the document and the summary into structured meaning representations (MRs)
MRs describe core semantic concepts and their relations, aggregating the main content in both document and summary in a canonical form, and reducing data sparsity.
Experiments on different benchmarks for evaluating factuality show that FactGraph outperforms previous approaches by up to 15%.
arXiv Detail & Related papers (2022-04-13T16:45:33Z) - SgSum: Transforming Multi-document Summarization into Sub-graph
Selection [27.40759123902261]
Most existing extractive multi-document summarization (MDS) methods score each sentence individually and extract salient sentences one by one to compose a summary.
We propose a novel MDS framework (SgSum) to formulate the MDS task as a sub-graph selection problem.
Our model can produce significantly more coherent and informative summaries compared with traditional MDS methods.
arXiv Detail & Related papers (2021-10-25T05:12:10Z) - Multiplex Graph Neural Network for Extractive Text Summarization [34.185093491514394]
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary.
We propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words.
Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization.
arXiv Detail & Related papers (2021-08-29T16:11:01Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - Selective Attention Encoders by Syntactic Graph Convolutional Networks
for Document Summarization [21.351111598564987]
We propose a graph to connect the parsing trees from the sentences in a document and utilize the stacked graph convolutional networks (GCNs) to learn the syntactic representation for a document.
The proposed GCNs based selective attention approach outperforms the baselines and achieves the state-of-the-art performance on the dataset.
arXiv Detail & Related papers (2020-03-18T01:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.