GoSum: Extractive Summarization of Long Documents by Reinforcement
Learning and Graph Organized discourse state
- URL: http://arxiv.org/abs/2211.10247v1
- Date: Fri, 18 Nov 2022 14:07:29 GMT
- Title: GoSum: Extractive Summarization of Long Documents by Reinforcement
Learning and Graph Organized discourse state
- Authors: Junyi Bian, Xiaodi Huang, Hong Zhou, Shanfeng Zhu
- Abstract summary: We propose GoSum, a reinforcement-learning-based extractive model for long-paper summarization.
GoSum encodes states by building a heterogeneous graph from different discourse levels for each input document.
We evaluate the model on two datasets of scientific articles summarization: PubMed and arXiv.
- Score: 6.4805900740861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handling long texts with structural information and excluding redundancy
between summary sentences are essential in extractive document summarization.
In this work, we propose GoSum, a novel reinforcement-learning-based extractive
model for long-paper summarization. GoSum encodes states by building a
heterogeneous graph from different discourse levels for each input document. We
evaluate the model on two datasets of scientific articles summarization: PubMed
and arXiv where it outperforms all extractive summarization models and most of
the strong abstractive baselines.
Related papers
- From News to Summaries: Building a Hungarian Corpus for Extractive and Abstractive Summarization [0.19107347888374507]
HunSum-2 is an open-source Hungarian corpus suitable for training abstractive and extractive summarization models.
The dataset is assembled from segments of the Common Crawl corpus undergoing thorough cleaning.
arXiv Detail & Related papers (2024-04-04T16:07:06Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
We focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings.
Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework.
Motivated by this, we propose a Graph-based Supervised Summarization model (GSS) to achieve more accurate results on the task when large-scale labeled data are available.
arXiv Detail & Related papers (2022-12-08T11:53:12Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
We redefine the task of scientific papers summarization by utilizing their citation graph.
We construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains.
Our model can achieve competitive performance when compared with the pretrained models.
arXiv Detail & Related papers (2021-04-07T11:13:35Z) - On Generating Extended Summaries of Long Documents [16.149617108647707]
We present a new method for generating extended summaries of long papers.
Our method exploits hierarchical structure of the documents and incorporates it into an extractive summarization model.
Our analysis shows that our multi-tasking approach can adjust extraction probability distribution to the favor of summary-worthy sentences.
arXiv Detail & Related papers (2020-12-28T08:10:28Z) - Topic-Guided Abstractive Text Summarization: a Joint Learning Approach [19.623946402970933]
We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization.
The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework.
arXiv Detail & Related papers (2020-10-20T14:45:25Z) - Enhancing Extractive Text Summarization with Topic-Aware Graph Neural
Networks [21.379555672973975]
This paper proposes a graph neural network (GNN)-based extractive summarization model.
Our model integrates a joint neural topic model (NTM) to discover latent topics, which can provide document-level features for sentence selection.
The experimental results demonstrate that our model achieves substantially state-of-the-art results on CNN/DM and NYT datasets.
arXiv Detail & Related papers (2020-10-13T09:30:04Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - Screenplay Summarization Using Latent Narrative Structure [78.45316339164133]
We propose to explicitly incorporate the underlying structure of narratives into general unsupervised and supervised extractive summarization models.
We formalize narrative structure in terms of key narrative events (turning points) and treat it as latent in order to summarize screenplays.
Experimental results on the CSI corpus of TV screenplays, which we augment with scene-level summarization labels, show that latent turning points correlate with important aspects of a CSI episode.
arXiv Detail & Related papers (2020-04-27T11:54:19Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
Cross-sentence relations are a crucial step in extractive document summarization.
We present a graph-based neural network for extractive summarization (HeterSumGraph)
We introduce different types of nodes into graph-based neural networks for extractive document summarization.
arXiv Detail & Related papers (2020-04-26T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.