Adversarial Attack Driven Data Augmentation for Accurate And Robust
Medical Image Segmentation
- URL: http://arxiv.org/abs/2105.12106v1
- Date: Tue, 25 May 2021 17:44:19 GMT
- Title: Adversarial Attack Driven Data Augmentation for Accurate And Robust
Medical Image Segmentation
- Authors: Mst. Tasnim Pervin, Linmi Tao, Aminul Huq, Zuoxiang He, Li Huo
- Abstract summary: We propose a new augmentation method by introducing adversarial learning attack techniques.
We have also introduced the concept of Inverse FGSM, which works in the opposite manner of FGSM for the data augmentation.
The overall analysis of experiments indicates a novel use of adversarial machine learning along with robustness enhancement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation is considered to be a very crucial task in medical image
analysis. This task has been easier since deep learning models have taken over
with its high performing behavior. However, deep learning models dependency on
large data proves it to be an obstacle in medical image analysis because of
insufficient data samples. Several data augmentation techniques have been used
to mitigate this problem. We propose a new augmentation method by introducing
adversarial learning attack techniques, specifically Fast Gradient Sign Method
(FGSM). Furthermore, We have also introduced the concept of Inverse FGSM
(InvFGSM), which works in the opposite manner of FGSM for the data
augmentation. This two approaches worked together to improve the segmentation
accuracy, as well as helped the model to gain robustness against adversarial
attacks. The overall analysis of experiments indicates a novel use of
adversarial machine learning along with robustness enhancement.
Related papers
- On Evaluating Adversarial Robustness of Volumetric Medical Segmentation Models [59.45628259925441]
Volumetric medical segmentation models have achieved significant success on organ and tumor-based segmentation tasks.
Their vulnerability to adversarial attacks remains largely unexplored.
This underscores the importance of investigating the robustness of existing models.
arXiv Detail & Related papers (2024-06-12T17:59:42Z) - Longitudinal detection of new MS lesions using Deep Learning [0.0]
We describe a deep-learning-based pipeline addressing the task of detecting and segmenting new MS lesions.
First, we propose to use transfer-learning from a model trained on a segmentation task using single time-points.
Second, we propose a data synthesis strategy to generate realistic longitudinal time-points with new lesions.
arXiv Detail & Related papers (2022-06-16T16:09:04Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Augmentation based unsupervised domain adaptation [2.304713283039168]
Deep learning models trained on small and unrepresentative data tend to outperform when deployed in data that differs from the one used for training.
Our approach takes advantage of the properties of adversarial domain adaptation and consistency training to achieve more robust adaptation.
arXiv Detail & Related papers (2022-02-23T13:06:07Z) - Get your Foes Fooled: Proximal Gradient Split Learning for Defense
against Model Inversion Attacks on IoMT data [5.582293277542012]
In this work, we propose proximal gradient split learning (PSGL) method for defense against the model inversion attacks.
We propose the use of proximal gradient method to recover gradient maps and a decision-level fusion strategy to improve the recognition performance.
arXiv Detail & Related papers (2022-01-12T17:01:19Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.