Context-Sensitive Visualization of Deep Learning Natural Language
Processing Models
- URL: http://arxiv.org/abs/2105.12202v1
- Date: Tue, 25 May 2021 20:26:38 GMT
- Title: Context-Sensitive Visualization of Deep Learning Natural Language
Processing Models
- Authors: Andrew Dunn, Diana Inkpen, R\u{a}zvan Andonie
- Abstract summary: We propose a new NLP Transformer context-sensitive visualization method.
It finds the most significant groups of tokens (words) that have the greatest effect on the output.
The most influential word combinations are visualized in a heatmap.
- Score: 9.694190108703229
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The introduction of Transformer neural networks has changed the landscape of
Natural Language Processing (NLP) during the last years. So far, none of the
visualization systems has yet managed to examine all the facets of the
Transformers. This gave us the motivation of the current work. We propose a new
NLP Transformer context-sensitive visualization method that leverages existing
NLP tools to find the most significant groups of tokens (words) that have the
greatest effect on the output, thus preserving some context from the original
text. First, we use a sentence-level dependency parser to highlight promising
word groups. The dependency parser creates a tree of relationships between the
words in the sentence. Next, we systematically remove adjacent and non-adjacent
tuples of \emph{n} tokens from the input text, producing several new texts with
those tokens missing. The resulting texts are then passed to a pre-trained BERT
model. The classification output is compared with that of the full text, and
the difference in the activation strength is recorded. The modified texts that
produce the largest difference in the target classification output neuron are
selected, and the combination of removed words are then considered to be the
most influential on the model's output. Finally, the most influential word
combinations are visualized in a heatmap.
Related papers
- Copy Is All You Need [66.00852205068327]
We formulate text generation as progressively copying text segments from an existing text collection.
Our approach achieves better generation quality according to both automatic and human evaluations.
Our approach attains additional performance gains by simply scaling up to larger text collections.
arXiv Detail & Related papers (2023-07-13T05:03:26Z) - Like a Good Nearest Neighbor: Practical Content Moderation and Text
Classification [66.02091763340094]
Like a Good Nearest Neighbor (LaGoNN) is a modification to SetFit that introduces no learnable parameters but alters input text with information from its nearest neighbor.
LaGoNN is effective at flagging undesirable content and text classification, and improves the performance of SetFit.
arXiv Detail & Related papers (2023-02-17T15:43:29Z) - Between words and characters: A Brief History of Open-Vocabulary
Modeling and Tokenization in NLP [22.772546707304766]
We show how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated.
We conclude that there is and likely will never be a silver bullet singular solution for all applications.
arXiv Detail & Related papers (2021-12-20T13:04:18Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Charformer: Fast Character Transformers via Gradient-based Subword
Tokenization [50.16128796194463]
We propose a new model inductive bias that learns a subword tokenization end-to-end as part of the model.
We introduce a soft gradient-based subword tokenization module (GBST) that automatically learns latent subword representations from characters.
We additionally introduce Charformer, a deep Transformer model that integrates GBST and operates on the byte level.
arXiv Detail & Related papers (2021-06-23T22:24:14Z) - A Case Study of Spanish Text Transformations for Twitter Sentiment
Analysis [1.9694608733361543]
Sentiment analysis is a text mining task that determines the polarity of a given text, i.e., its positiveness or negativeness.
New forms of textual expressions present new challenges to analyze text given the use of slang, orthographic and grammatical errors.
arXiv Detail & Related papers (2021-06-03T17:24:31Z) - Dependency Parsing based Semantic Representation Learning with Graph
Neural Network for Enhancing Expressiveness of Text-to-Speech [49.05471750563229]
We propose a semantic representation learning method based on graph neural network, considering dependency relations of a sentence.
We show that our proposed method outperforms the baseline using vanilla BERT features both in LJSpeech and Bilzzard Challenge 2013 datasets.
arXiv Detail & Related papers (2021-04-14T13:09:51Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
We propose using optimal transport (OT) to match the sequences generated in training and testing modes.
An extension is also proposed to improve the OT learning, based on the structural and contextual information of the text sequences.
The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
arXiv Detail & Related papers (2020-10-12T19:42:25Z) - An Intelligent CNN-VAE Text Representation Technology Based on Text
Semantics for Comprehensive Big Data [15.680918844684454]
A text feature representation model based on convolutional neural network (CNN) and variational autoencoder (VAE) is proposed.
The proposed model outperforms in k-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) classification algorithms.
arXiv Detail & Related papers (2020-08-28T07:39:45Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
Self-supervised pre-training has emerged as a powerful technique for natural language understanding and generation.
This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus.
An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks.
arXiv Detail & Related papers (2020-04-14T06:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.