Between words and characters: A Brief History of Open-Vocabulary
Modeling and Tokenization in NLP
- URL: http://arxiv.org/abs/2112.10508v1
- Date: Mon, 20 Dec 2021 13:04:18 GMT
- Title: Between words and characters: A Brief History of Open-Vocabulary
Modeling and Tokenization in NLP
- Authors: Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel,
Manan Dey, Matthias Gall\'e, Arun Raja, Chenglei Si, Wilson Y. Lee, Beno\^it
Sagot, Samson Tan
- Abstract summary: We show how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated.
We conclude that there is and likely will never be a silver bullet singular solution for all applications.
- Score: 22.772546707304766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: What are the units of text that we want to model? From bytes to multi-word
expressions, text can be analyzed and generated at many granularities. Until
recently, most natural language processing (NLP) models operated over words,
treating those as discrete and atomic tokens, but starting with byte-pair
encoding (BPE), subword-based approaches have become dominant in many areas,
enabling small vocabularies while still allowing for fast inference. Is the end
of the road character-level model or byte-level processing? In this survey, we
connect several lines of work from the pre-neural and neural era, by showing
how hybrid approaches of words and characters as well as subword-based
approaches based on learned segmentation have been proposed and evaluated. We
conclude that there is and likely will never be a silver bullet singular
solution for all applications and that thinking seriously about tokenization
remains important for many applications.
Related papers
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - A General and Flexible Multi-concept Parsing Framework for Multilingual Semantic Matching [60.51839859852572]
We propose to resolve the text into multi concepts for multilingual semantic matching to liberate the model from the reliance on NER models.
We conduct comprehensive experiments on English datasets QQP and MRPC, and Chinese dataset Medical-SM.
arXiv Detail & Related papers (2024-03-05T13:55:16Z) - Learning Mutually Informed Representations for Characters and Subwords [26.189422354038978]
We introduce the entanglement model, aiming to combine character and subword language models.
Inspired by vision-language models, our model treats characters and subwords as separate modalities.
We evaluate our model on text classification, named entity recognition, POS-tagging, and character-level sequence labeling.
arXiv Detail & Related papers (2023-11-14T02:09:10Z) - Learn Your Tokens: Word-Pooled Tokenization for Language Modeling [11.40976202290724]
Language models typically tokenize text into subwords, using a deterministic, hand-engineered of combining tokens into longer strings.
Recent attempts to compress and limit context lengths with fixed size convolutions is helpful but completely ignores the word boundary.
This paper considers an alternative 'learn your word' scheme which utilizes the word boundary to pool bytes/characters into word representations.
arXiv Detail & Related papers (2023-10-17T23:34:39Z) - From Characters to Words: Hierarchical Pre-trained Language Model for
Open-vocabulary Language Understanding [22.390804161191635]
Current state-of-the-art models for natural language understanding require a preprocessing step to convert raw text into discrete tokens.
This process known as tokenization relies on a pre-built vocabulary of words or sub-word morphemes.
We introduce a novel open-vocabulary language model that adopts a hierarchical two-level approach.
arXiv Detail & Related papers (2023-05-23T23:22:20Z) - CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
We systematically study decompounding, the task of splitting compound words into their constituents.
We introduce a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary.
We introduce a novel methodology to train dedicated models for decompounding.
arXiv Detail & Related papers (2023-05-23T16:32:27Z) - Word-Level Representation From Bytes For Language Modeling [46.28198397863388]
Sub-word tokenization is not robust to noise and difficult to generalize to new languages.
We introduce a cross-attention network that builds word-level representation directly from bytes, and a sub-word level prediction based on word-level hidden states.
Byte2Word is on par with the strong sub-word baseline BERT but only takes up 10% of embedding size.
arXiv Detail & Related papers (2022-11-23T03:11:13Z) - A Vocabulary-Free Multilingual Neural Tokenizer for End-to-End Task
Learning [8.052271364177988]
Subword tokenization is a commonly used input pre-processing step in most recent NLP models.
We propose a vocabulary-free neural tokenizer by distilling segmentation information from subword tokenization.
Our tokenizer consistently improves performance on multilingual (NLI) and code-switching (sentiment analysis) tasks.
arXiv Detail & Related papers (2022-04-22T16:50:49Z) - Charformer: Fast Character Transformers via Gradient-based Subword
Tokenization [50.16128796194463]
We propose a new model inductive bias that learns a subword tokenization end-to-end as part of the model.
We introduce a soft gradient-based subword tokenization module (GBST) that automatically learns latent subword representations from characters.
We additionally introduce Charformer, a deep Transformer model that integrates GBST and operates on the byte level.
arXiv Detail & Related papers (2021-06-23T22:24:14Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
This paper proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance.
We build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images.
Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.
arXiv Detail & Related papers (2020-12-30T09:11:50Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.