Block Dense Weighted Networks with Augmented Degree Correction
- URL: http://arxiv.org/abs/2105.12290v1
- Date: Wed, 26 May 2021 01:25:07 GMT
- Title: Block Dense Weighted Networks with Augmented Degree Correction
- Authors: Benjamin Leinwand, Vladas Pipiras
- Abstract summary: We propose a new framework for generating and estimating dense weighted networks with potentially different connectivity patterns.
The proposed model relies on a particular class of functions which map individual node characteristics to the edges connecting those nodes.
We also develop a bootstrap methodology for generating new networks on the same set of vertices, which may be useful in circumstances where multiple data sets cannot be collected.
- Score: 1.2031796234206138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dense networks with weighted connections often exhibit a community like
structure, where although most nodes are connected to each other, different
patterns of edge weights may emerge depending on each node's community
membership. We propose a new framework for generating and estimating dense
weighted networks with potentially different connectivity patterns across
different communities. The proposed model relies on a particular class of
functions which map individual node characteristics to the edges connecting
those nodes, allowing for flexibility while requiring a small number of
parameters relative to the number of edges. By leveraging the estimation
techniques, we also develop a bootstrap methodology for generating new networks
on the same set of vertices, which may be useful in circumstances where
multiple data sets cannot be collected. Performance of these methods are
analyzed in theory, simulations, and real data.
Related papers
- A Dirichlet stochastic block model for composition-weighted networks [0.0]
We propose a block model for composition-weighted networks based on direct modelling of compositional weight vectors.
Inference is implemented via an extension of the classification expectation-maximisation algorithm.
The model is validated using simulation studies, and showcased on network data from the Erasmus exchange program and a bike sharing network for the city of London.
arXiv Detail & Related papers (2024-08-01T15:41:07Z) - Exact Recovery and Bregman Hard Clustering of Node-Attributed Stochastic
Block Model [0.16385815610837165]
This paper presents an information-theoretic criterion for the exact recovery of community labels.
It shows how network and attribute information can be exchanged in order to have exact recovery.
It also presents an iterative clustering algorithm that maximizes the joint likelihood.
arXiv Detail & Related papers (2023-10-30T16:46:05Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - Network Clustering for Latent State and Changepoint Detection [0.0]
We propose a convex approach for the task of network clustering.
We provide an efficient algorithm for convex network clustering and demonstrate its effectiveness on synthetic examples.
arXiv Detail & Related papers (2021-11-01T21:51:45Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - Latent Poisson models for networks with heterogeneous density [0.0]
Empirical networks are often globally sparse, with a small average number of connections per node, when compared to the total size of the network.
We show how latent Poisson models which generate hidden multigraphs can be effective at capturing this density, while being more tractable mathematically than some of the alternatives that model simple graphs directly.
arXiv Detail & Related papers (2020-02-18T18:58:13Z) - A Block-based Generative Model for Attributed Networks Embedding [42.00826538556588]
We propose a block-based generative model for attributed network embedding from a probability perspective.
We use a neural network to characterize the nonlinearity between node embeddings and node attributes.
The results show that our proposed method consistently outperforms state-of-the-art embedding methods for both clustering and classification tasks.
arXiv Detail & Related papers (2020-01-06T03:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.