A Dirichlet stochastic block model for composition-weighted networks
- URL: http://arxiv.org/abs/2408.00651v1
- Date: Thu, 1 Aug 2024 15:41:07 GMT
- Title: A Dirichlet stochastic block model for composition-weighted networks
- Authors: Iuliia Promskaia, Adrian O'Hagan, Michael Fop,
- Abstract summary: We propose a block model for composition-weighted networks based on direct modelling of compositional weight vectors.
Inference is implemented via an extension of the classification expectation-maximisation algorithm.
The model is validated using simulation studies, and showcased on network data from the Erasmus exchange program and a bike sharing network for the city of London.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network data are observed in various applications where the individual entities of the system interact with or are connected to each other, and often these interactions are defined by their associated strength or importance. Clustering is a common task in network analysis that involves finding groups of nodes displaying similarities in the way they interact with the rest of the network. However, most clustering methods use the strengths of connections between entities in their original form, ignoring the possible differences in the capacities of individual nodes to send or receive edges. This often leads to clustering solutions that are heavily influenced by the nodes' capacities. One way to overcome this is to analyse the strengths of connections in relative rather than absolute terms, expressing each edge weight as a proportion of the sending (or receiving) capacity of the respective node. This, however, induces additional modelling constraints that most existing clustering methods are not designed to handle. In this work we propose a stochastic block model for composition-weighted networks based on direct modelling of compositional weight vectors using a Dirichlet mixture, with the parameters determined by the cluster labels of the sender and the receiver nodes. Inference is implemented via an extension of the classification expectation-maximisation algorithm that uses a working independence assumption, expressing the complete data likelihood of each node of the network as a function of fixed cluster labels of the remaining nodes. A model selection criterion is derived to aid the choice of the number of clusters. The model is validated using simulation studies, and showcased on network data from the Erasmus exchange program and a bike sharing network for the city of London.
Related papers
- Exact Recovery and Bregman Hard Clustering of Node-Attributed Stochastic
Block Model [0.16385815610837165]
This paper presents an information-theoretic criterion for the exact recovery of community labels.
It shows how network and attribute information can be exchanged in order to have exact recovery.
It also presents an iterative clustering algorithm that maximizes the joint likelihood.
arXiv Detail & Related papers (2023-10-30T16:46:05Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Deep Embedded Clustering with Distribution Consistency Preservation for
Attributed Networks [15.895606627146291]
In this study, we propose an end-to-end deep embedded clustering model for attributed networks.
It utilizes graph autoencoder and node attribute autoencoder to respectively learn node representations and cluster assignments.
The proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-05-28T02:35:34Z) - Network Clustering for Latent State and Changepoint Detection [0.0]
We propose a convex approach for the task of network clustering.
We provide an efficient algorithm for convex network clustering and demonstrate its effectiveness on synthetic examples.
arXiv Detail & Related papers (2021-11-01T21:51:45Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Block Dense Weighted Networks with Augmented Degree Correction [1.2031796234206138]
We propose a new framework for generating and estimating dense weighted networks with potentially different connectivity patterns.
The proposed model relies on a particular class of functions which map individual node characteristics to the edges connecting those nodes.
We also develop a bootstrap methodology for generating new networks on the same set of vertices, which may be useful in circumstances where multiple data sets cannot be collected.
arXiv Detail & Related papers (2021-05-26T01:25:07Z) - Variational Co-embedding Learning for Attributed Network Clustering [30.7006907516984]
Recent works for attributed network clustering utilize graph convolution to obtain node embeddings and simultaneously perform clustering assignments on the embedding space.
We propose a variational co-embedding learning model for attributed network clustering (ANC)
ANC is composed of dual variational auto-encoders to simultaneously embed nodes and attributes.
arXiv Detail & Related papers (2021-04-15T08:11:47Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.