論文の概要: Entropy and complexity unveil the landscape of memes evolution
- arxiv url: http://arxiv.org/abs/2105.12376v1
- Date: Wed, 26 May 2021 07:41:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 12:00:54.867962
- Title: Entropy and complexity unveil the landscape of memes evolution
- Title(参考訳): エントロピーと複雑さがミーム進化の風景を明かす
- Authors: Carlo Michele Valensise, Alessandra Serra, Alessandro Galeazzi,
Gabriele Etta, Matteo Cinelli, Walter Quattrociocchi
- Abstract要約: われわれは、2011年から2020年までの10年間で、Redditから200万のビジュアルミームの進化を研究した。
ミームは新たなインターネットメタ言語の一部であるという仮説を支持する。
- 参考スコア(独自算出の注目度): 105.59074436693487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On the Internet, information circulates fast and widely, and the form of
content adapts to comply with users' cognitive abilities. Memes are an emerging
aspect of the internet system of signification, and their visual schemes evolve
by adapting to a heterogeneous context. A fundamental question is whether they
present culturally and temporally transcendent characteristics in their
organizing principles. In this work, we study the evolution of 2 million visual
memes from Reddit over ten years, from 2011 to 2020, in terms of their
statistical complexity and entropy. We find support for the hypothesis that
memes are part of an emerging form of internet metalanguage: on one side, we
observe an exponential growth with a doubling time of approximately 6 months;
on the other side, the complexity of memes contents increases, allowing and
adapting to represent social trends and attitudes.
- Abstract(参考訳): インターネット上では、情報は迅速かつ広範囲に流通し、コンテンツの形式はユーザの認知能力に適合する。
ミームはinternet system of significationの新たな側面であり、その視覚的スキームは異質な文脈に適応することで進化する。
根本的な疑問は、それらの組織原則が文化的かつ時間的に超越した特性を示すかどうかである。
本研究では,統計の複雑さとエントロピーの観点から,2011年から2020年までの10年間で,redditから200万のビジュアルミームの進化を考察した。
我々は,ミームが新たなインターネットメタ言語の一部であるという仮説を支持する。一方,2倍の時間で指数関数的な成長を観察し,他方では,ミームの内容の複雑さが増大し,社会的傾向や態度の表現を可能にし,適応する。
関連論文リスト
- Evolver: Chain-of-Evolution Prompting to Boost Large Multimodal Models for Hateful Meme Detection [49.122777764853055]
ヘイトフルミーム検出のためのLMM(Large Multimodal Models)の可能性を探る。
提案するEvolverは,Chain-of-Evolution (CoE) Promptingを介してLMMを組み込む。
Evolverは、ステップバイステップでLMMを通してミームと理由の進化と表現のプロセスをシミュレートする。
論文 参考訳(メタデータ) (2024-07-30T17:51:44Z) - XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
社会的な意味や文化的な詳細に深く根ざした噂は、機械にとってユニークな挑戦である。
我々は、教師付き微調整と強化学習を採用するtextscXMeCapフレームワークを紹介した。
textscXMeCapは、シングルイメージのミームの平均評価スコアが75.85で、マルチイメージのミームは66.32で、それぞれ3.71%と4.82%で最高のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-07-24T10:51:46Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
Em MultiBully-Exは、コード混在型サイバーいじめミームからマルチモーダルな説明を行うための最初のベンチマークデータセットである。
ミームの視覚的およびテキスト的説明のために,コントラスト言語-画像事前学習 (CLIP) アプローチが提案されている。
論文 参考訳(メタデータ) (2024-01-18T11:24:30Z) - Contextualizing Internet Memes Across Social Media Platforms [8.22187358555391]
我々は,知識のセマンティックリポジトリ,すなわち知識グラフを用いて,インターネットミームを文脈化できるかどうかを検討する。
RedditとDiscordという2つのソーシャルメディアプラットフォームから何千もの潜在的なインターネットミーム投稿を収集し、抽出-変換-ロード手順を開発し、候補ミーム投稿とデータレイクを作成します。
視覚変換器をベースとした類似性を利用して、これらの候補をIMKGでカタログ化されたミーム(インターネットミームの知識グラフ)と比較する。
論文 参考訳(メタデータ) (2023-11-18T20:18:18Z) - Detecting and Understanding Harmful Memes: A Survey [48.135415967633676]
我々は有害なミームに焦点を当てた総合的な調査を行っている。
興味深い発見の1つは、多くの有害ミームが実際には研究されていないことである。
別の観察では、ミームは異なる言語で再パッケージ化することでグローバルに伝播し、多言語化することもできる。
論文 参考訳(メタデータ) (2022-05-09T13:43:27Z) - Feels Bad Man: Dissecting Automated Hateful Meme Detection Through the
Lens of Facebook's Challenge [10.775419935941008]
我々は,現在最先端のマルチモーダル機械学習モデルのヘイトフルミーム検出に対する有効性を評価する。
4chanの"Politically Incorrect"ボード(/pol/)とFacebookのHateful Memes Challengeデータセットの12,140と10,567の2つのベンチマークデータセットを使用します。
分類性能におけるマルチモーダリティの重要性,主流のソーシャルプラットフォーム上でのWebコミュニティの影響力,その逆の3つの実験を行った。
論文 参考訳(メタデータ) (2022-02-17T07:52:22Z) - Multi-modal application: Image Memes Generation [13.043370069398916]
エンド・ツー・エンドのエンコーダ・デコーダ・アーキテクチャ・ミーム・ジェネレータを提案する。
インターネットミームは一般的にイメージの形をとり、ミームテンプレート(画像)とキャプション(自然言語文)を組み合わせて作成される。
論文 参考訳(メタデータ) (2021-12-03T00:17:44Z) - Memes in the Wild: Assessing the Generalizability of the Hateful Memes
Challenge Dataset [47.65948529524281]
Pinterestからヘイトフルで非ヘイトフルなミームを収集して、Facebookデータセットで事前トレーニングされたモデルで、サンプル外のパフォーマンスを評価します。
1) キャプションをOCRで抽出しなければならない,2) ミームは従来のミームよりも多様であり, 会話のスクリーンショットやテキストをプレーンな背景に表示する,という2つの重要な側面がある。
論文 参考訳(メタデータ) (2021-07-09T09:04:05Z) - Automatic Discovery of Political Meme Genres with Diverse Appearances [7.3228874258537875]
多様な外観の政治的ジャンルを発見するために,スケーラブルな自動視覚認識パイプラインを導入する。
このパイプラインは、ソーシャルネットワークからミーム画像を取り込み、コンピュータビジョンベースの技術を用いて局所的な特徴を抽出し、ミームを関連するジャンルに整理することができる。
提案手法は, 視覚的に多彩な画像が共通のスタイル的要素を共有できるような, 新たなミームジャンルを発見できることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。