Context-aware Cross-level Fusion Network for Camouflaged Object
Detection
- URL: http://arxiv.org/abs/2105.12555v1
- Date: Wed, 26 May 2021 14:03:36 GMT
- Title: Context-aware Cross-level Fusion Network for Camouflaged Object
Detection
- Authors: Yujia Sun, Geng Chen, Tao Zhou, Yi Zhang, Nian Liu
- Abstract summary: We propose a novel Context-aware Cross-level Fusion Network (C2F-Net) to address the challenging COD task.
We show that our C2F-Net is an effective COD model and outperforms state-of-the-art models remarkably.
- Score: 23.109969322128958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD) is a challenging task due to the low
boundary contrast between the object and its surroundings. In addition, the
appearance of camouflaged objects varies significantly, e.g., object size and
shape, aggravating the difficulties of accurate COD. In this paper, we propose
a novel Context-aware Cross-level Fusion Network (C2F-Net) to address the
challenging COD task. Specifically, we propose an Attention-induced Cross-level
Fusion Module (ACFM) to integrate the multi-level features with informative
attention coefficients. The fused features are then fed to the proposed
Dual-branch Global Context Module (DGCM), which yields multi-scale feature
representations for exploiting rich global context information. In C2F-Net, the
two modules are conducted on high-level features using a cascaded manner.
Extensive experiments on three widely used benchmark datasets demonstrate that
our C2F-Net is an effective COD model and outperforms state-of-the-art models
remarkably. Our code is publicly available at:
https://github.com/thograce/C2FNet.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - CoFiNet: Unveiling Camouflaged Objects with Multi-Scale Finesse [46.79770062391987]
We introduce a novel method for camouflage object detection, named CoFiNet.
Our approach focuses on multi-scale feature fusion and extraction, with special attention to the model's segmentation effectiveness.
CoFiNet achieves state-of-the-art performance across all datasets.
arXiv Detail & Related papers (2024-02-03T17:24:55Z) - Large Model Based Referring Camouflaged Object Detection [51.80619142347807]
Referring camouflaged object detection (Ref-COD) is a recently-proposed problem aiming to segment out specified camouflaged objects matched with a textual or visual reference.
Our motivation is to make full use of the semantic intelligence and intrinsic knowledge of recent Multimodal Large Language Models (MLLMs) to decompose this complex task in a human-like way.
We propose a large-model-based Multi-Level Knowledge-Guided multimodal method for Ref-COD termed MLKG.
arXiv Detail & Related papers (2023-11-28T13:45:09Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Camouflaged Object Detection with Feature Grafting and Distractor Aware [9.791590363932519]
We propose a novel Feature Grafting and Distractor Aware network (FDNet) to handle the Camouflaged Object Detection task.
Specifically, we use CNN and Transformer to encode multi-scale images in parallel.
A Distractor Aware Module is designed to explicitly model the two possible distractors in the COD task to refine the coarse camouflage map.
arXiv Detail & Related papers (2023-07-08T09:37:08Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment.
Several COD methods have been developed, but they still suffer from unsatisfactory performance due to intrinsic similarities between foreground objects and background surroundings.
We propose a novel Feature Aggregation and propagation Network (FAP-Net) for camouflaged object detection.
arXiv Detail & Related papers (2022-12-02T05:54:28Z) - Camouflaged Object Detection via Context-aware Cross-level Fusion [10.942917945534678]
Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes.
We propose a novel Context-aware Cross-level Fusion Network (C2F-Net), which fuses context-aware cross-level features.
C2F-Net is an effective COD model and outperforms state-of-the-art (SOTA) models remarkably.
arXiv Detail & Related papers (2022-07-27T08:34:16Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - Towards Accurate Camouflaged Object Detection with Mixture Convolution and Interactive Fusion [45.45231015502287]
We propose a novel deep learning based COD approach, which integrates the large receptive field and effective feature fusion into a unified framework.
Our method detects camouflaged objects with an effective fusion strategy, which aggregates the rich context information from a large receptive field.
arXiv Detail & Related papers (2021-01-14T16:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.