Disentangled Face Attribute Editing via Instance-Aware Latent Space
Search
- URL: http://arxiv.org/abs/2105.12660v2
- Date: Thu, 27 May 2021 14:24:35 GMT
- Title: Disentangled Face Attribute Editing via Instance-Aware Latent Space
Search
- Authors: Yuxuan Han, Jiaolong Yang, and Ying Fu
- Abstract summary: A rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs)
Existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one.
We propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing.
- Score: 30.17338705964925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent works have shown that a rich set of semantic directions exist in the
latent space of Generative Adversarial Networks (GANs), which enables various
facial attribute editing applications. However, existing methods may suffer
poor attribute variation disentanglement, leading to unwanted change of other
attributes when altering the desired one. The semantic directions used by
existing methods are at attribute level, which are difficult to model complex
attribute correlations, especially in the presence of attribute distribution
bias in GAN's training set. In this paper, we propose a novel framework (IALS)
that performs Instance-Aware Latent-Space Search to find semantic directions
for disentangled attribute editing. The instance information is injected by
leveraging the supervision from a set of attribute classifiers evaluated on the
input images. We further propose a Disentanglement-Transformation (DT) metric
to quantify the attribute transformation and disentanglement efficacy and find
the optimal control factor between attribute-level and instance-specific
directions based on it. Experimental results on both GAN-generated and
real-world images collectively show that our method outperforms
state-of-the-art methods proposed recently by a wide margin. Code is available
at https://github.com/yxuhan/IALS.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Exploring Attribute Variations in Style-based GANs using Diffusion
Models [48.98081892627042]
We formulate the task of textitdiverse attribute editing by modeling the multidimensional nature of attribute edits.
We capitalize on disentangled latent spaces of pretrained GANs and train a Denoising Diffusion Probabilistic Model (DDPM) to learn the latent distribution for diverse edits.
arXiv Detail & Related papers (2023-11-27T18:14:03Z) - SC2GAN: Rethinking Entanglement by Self-correcting Correlated GAN Space [16.040942072859075]
Gene Networks that achieve following editing directions for one attribute could result in entangled changes with other attributes.
We propose a novel framework SC$2$GAN disentanglement by re-projecting low-density latent code samples in the original latent space.
arXiv Detail & Related papers (2023-10-10T14:42:32Z) - A Solution to Co-occurrence Bias: Attributes Disentanglement via Mutual
Information Minimization for Pedestrian Attribute Recognition [10.821982414387525]
We show that current methods can actually suffer in generalizing such fitted attributes interdependencies onto scenes or identities off the dataset distribution.
To render models robust in realistic scenes, we propose the attributes-disentangled feature learning to ensure the recognition of an attribute not inferring on the existence of others.
arXiv Detail & Related papers (2023-07-28T01:34:55Z) - Leveraging Off-the-shelf Diffusion Model for Multi-attribute Fashion
Image Manipulation [27.587905673112473]
Fashion attribute editing is a task that aims to convert the semantic attributes of a given fashion image while preserving the irrelevant regions.
Previous works typically employ conditional GANs where the generator explicitly learns the target attributes and directly execute the conversion.
We explore the classifier-guided diffusion that leverages the off-the-shelf diffusion model pretrained on general visual semantics such as Imagenet.
arXiv Detail & Related papers (2022-10-12T02:21:18Z) - TransFA: Transformer-based Representation for Face Attribute Evaluation [87.09529826340304]
We propose a novel textbftransformer-based representation for textbfattribute evaluation method (textbfTransFA)
The proposed TransFA achieves superior performances compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-07-12T10:58:06Z) - Hybrid Routing Transformer for Zero-Shot Learning [83.64532548391]
This paper presents a novel transformer encoder-decoder model, called hybrid routing transformer (HRT)
We embed an active attention, which is constructed by both the bottom-up and the top-down dynamic routing pathways to generate the attribute-aligned visual feature.
While in HRT decoder, we use static routing to calculate the correlation among the attribute-aligned visual features, the corresponding attribute semantics, and the class attribute vectors to generate the final class label predictions.
arXiv Detail & Related papers (2022-03-29T07:55:08Z) - I^3Net: Implicit Instance-Invariant Network for Adapting One-Stage
Object Detectors [64.93963042395976]
Implicit Instance-Invariant Network (I3Net) is tailored for adapting one-stage detectors.
I3Net implicitly learns instance-invariant features via exploiting the natural characteristics of deep features in different layers.
Experiments reveal that I3Net exceeds the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2021-03-25T11:14:36Z) - Attribute-based Regularization of Latent Spaces for Variational
Auto-Encoders [79.68916470119743]
We present a novel method to structure the latent space of a Variational Auto-Encoder (VAE) to encode different continuous-valued attributes explicitly.
This is accomplished by using an attribute regularization loss which enforces a monotonic relationship between the attribute values and the latent code of the dimension along which the attribute is to be encoded.
arXiv Detail & Related papers (2020-04-11T20:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.